A Mammalian In Vitro Centriole Duplication System: Evidence for Involvement of CDK2/Cyclin E and Nucleophosmin/B23 in Centrosome Duplication

被引:47
作者
Tarapore, Pheruza [1 ]
Okuda, Masaru [2 ]
Fukasawa, Kenji [1 ]
机构
[1] Univ Cincinnati, Coll Med, Dept Cell Biol, Cincinnati, OH 45267 USA
[2] Yamaguchi Univ, Fac Agr, Yamaguchi 7538515, Japan
关键词
Centrosome Duplication; CDK2; Cyclin E; Nucleophosmin; B23;
D O I
10.4161/cc.1.1.103
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Centrosome duplication in mammalian cells is a highly regulated process, occurs in coordination of other cell cycle events. However, molecular exploration of this important cellular process had been difficult due to unavailability of a simple assay system. Here, using centrosomes loosely associated with nuclei isolated from cultured cells, we developed a cell-free centriole (duplication unit of the centrosome) duplication system: unduplicated centrosomes bound to the nuclei are able to undergo duplication in the presence of G1/S extracts. We show that the ability of G1/S extracts to induce centriole duplication in vitro depends on the presence of active CDK2/cyclin E. It has been shown that dissociation of centrosomal nucleophosmin (NPM)/B23 triggered by CDK2/cyclin E-mediated phosphorylation is required for initiation of centrosome duplication. We show that centriole duplication is blocked when nuclei were preincubated with the anti-NPM/B23 antibody that prevents phosphorylation of NPM/B23 by CDK2/cyclin E. These studies provide not only direct evidence for the requirement of CDK2/cyclin E and phosphorylation of NPM/B23 for centrosomes to initiate duplication, but a valuable experimental system for further exploration of the molecular regulation of centrosome duplication in somatic cells of higher animals.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 42 条
[1]  
[Anonymous], MITOSIS MOL MECH
[2]   DISSOCIATION OF CENTROSOME REPLICATION EVENTS FROM CYCLES OF DNA-SYNTHESIS AND MITOTIC DIVISION IN HYDROXYUREA-ARRESTED CHINESE-HAMSTER OVARY CELLS [J].
BALCZON, R ;
BAO, LM ;
ZIMMER, WE ;
BROWN, K ;
ZINKOWSKI, RP ;
BRINKLEY, BR .
JOURNAL OF CELL BIOLOGY, 1995, 130 (01) :105-115
[3]  
Brinkley BR, 1998, CELL MOTIL CYTOSKEL, V41, P281, DOI 10.1002/(SICI)1097-0169(1998)41:4<281::AID-CM1>3.0.CO
[4]  
2-C
[5]   Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression [J].
Carroll, PE ;
Okuda, M ;
Horn, HF ;
Biddinger, P ;
Stambrook, PJ ;
Gleich, LL ;
Li, YQ ;
Tarapore, P ;
Fukasawa, K .
ONCOGENE, 1999, 18 (11) :1935-1944
[6]   Re-evaluating centrosome function [J].
Doxsey, S .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (09) :688-698
[7]   ASSOCIATION OF HUMAN CYCLIN-E WITH A PERIODIC G(1)-S PHASE PROTEIN-KINASE [J].
DULIC, V ;
LEES, E ;
REED, SI .
SCIENCE, 1992, 257 (5078) :1958-1961
[8]   Regulation of G1 cyclin dependent kinases in the mammalian cell cycle [J].
Ekholm, SV ;
Reed, SI .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (06) :676-684
[9]   Abnormal centrosome amplification in the absence of p53 [J].
Fukasawa, K ;
Choi, T ;
Kuriyama, R ;
Rulong, S ;
VandeVoude, GF .
SCIENCE, 1996, 271 (5256) :1744-1747
[10]   INHIBITION OF CDK2 ACTIVITY IN-VIVO BY AN ASSOCIATED 20K REGULATORY SUBUNIT [J].
GU, Y ;
TURCK, CW ;
MORGAN, DO .
NATURE, 1993, 366 (6456) :707-710