Quantum adiabatic machine learning

被引:99
作者
Pudenz, Kristen L. [1 ]
Lidar, Daniel A. [1 ,2 ,3 ]
机构
[1] Univ So Calif, Dept Elect Engn, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Chem, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Phys, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
关键词
Adiabatic quantum computation; Quantum algorithms; Software verification and validation; Anomaly detection; COMPUTATION; DESIGN;
D O I
10.1007/s11128-012-0506-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.
引用
收藏
页码:2027 / 2070
页数:44
相关论文
共 53 条
[1]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, Dorit ;
Van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM JOURNAL ON COMPUTING, 2007, 37 (01) :166-194
[2]  
Aïmeur E, 2006, LECT NOTES ARTIF INT, V4013, P431
[3]  
[Anonymous], 2009, NIPS 2009 DEMONSTRAT
[4]  
[Anonymous], ARXIV08110416
[5]  
[Anonymous], IEEE 23 INT C DAT EN
[6]  
[Anonymous], 1972, Chapter I: Notes on structured programming, em Structured programming
[7]   Realizable Hamiltonians for universal adiabatic quantum computers [J].
Biamonte, Jacob D. ;
Love, Peter J. .
PHYSICAL REVIEW A, 2008, 78 (01)
[8]  
Bian Z., 2010, D-Wave Systems, P1
[9]   OCCAM RAZOR [J].
BLUMER, A ;
EHRENFEUCHT, A ;
HAUSSLER, D ;
WARMUTH, MK .
INFORMATION PROCESSING LETTERS, 1987, 24 (06) :377-380
[10]  
Breiman L, 1998, ANN STAT, V26, P801