Quantum adiabatic machine learning

被引:99
作者
Pudenz, Kristen L. [1 ]
Lidar, Daniel A. [1 ,2 ,3 ]
机构
[1] Univ So Calif, Dept Elect Engn, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Chem, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Phys, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
关键词
Adiabatic quantum computation; Quantum algorithms; Software verification and validation; Anomaly detection; COMPUTATION; DESIGN;
D O I
10.1007/s11128-012-0506-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.
引用
收藏
页码:2027 / 2070
页数:44
相关论文
共 53 条
[31]   Adiabatic approximation with exponential accuracy for many-body systems and quantum computation [J].
Lidar, Daniel A. ;
Rezakhani, Ali T. ;
Hamma, Alioscia .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
[32]  
Mannor S, 2001, LECT NOTES ARTIF INT, V2111, P461
[33]  
Meir R., 2003, Advanced Lectures on Machine Learning. Machine Learning Summer School 2002. Revised Lectures. (Lecture Notes in Artificial Intelligence Vol.2600), P118
[34]   Simple proof of equivalence between adiabatic quantum computation and the circuit model [J].
Mizel, Ari ;
Lidar, Daniel A. ;
Mitchell, Morgan .
PHYSICAL REVIEW LETTERS, 2007, 99 (07)
[35]  
Neven H., ARXIV08044457
[36]  
Neven H., ARXIV09120779
[37]   Anomaly Detection: A Survey [J].
Chandola, Varun ;
Banerjee, Arindam ;
Kumar, Vipin .
ACM COMPUTING SURVEYS, 2009, 41 (03)
[38]   Accuracy versus run time in an adiabatic quantum search [J].
Rezakhani, A. T. ;
Pimachev, A. K. ;
Lidar, D. A. .
PHYSICAL REVIEW A, 2010, 82 (05)
[39]   Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions [J].
Rezakhani, A. T. ;
Abasto, D. F. ;
Lidar, D. A. ;
Zanardi, P. .
PHYSICAL REVIEW A, 2010, 82 (01)
[40]   Quantum Adiabatic Brachistochrone [J].
Rezakhani, A. T. ;
Kuo, W. -J. ;
Hamma, A. ;
Lidar, D. A. ;
Zanardi, P. .
PHYSICAL REVIEW LETTERS, 2009, 103 (08)