Accuracy versus run time in an adiabatic quantum search

被引:62
作者
Rezakhani, A. T. [1 ,2 ,3 ]
Pimachev, A. K. [1 ,2 ]
Lidar, D. A. [1 ,2 ,4 ,5 ]
机构
[1] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] Sharif Univ Technol, Dept Phys, Tehran, Iran
[4] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
[5] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
ALGORITHM; IMPLEMENTATION;
D O I
10.1103/PhysRevA.82.052305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Adiabatic quantum algorithms are characterized by their run time and accuracy. The relation between the two is essential for quantifying adiabatic algorithmic performance yet is often poorly understood. We study the dynamics of a continuous time, adiabatic quantum search algorithm and find rigorous results relating the accuracy and the run time. Proceeding with estimates, we show that under fairly general circumstances the adiabatic algorithmic error exhibits a behavior with two discernible regimes: The error decreases exponentially for short times and then decreases polynomially for longer times. We show that the well-known quadratic speedup over classical search is associated only with the exponential error regime. We illustrate the results through examples of evolution paths derived by minimization of the adiabatic error. We also discuss specific strategies for controlling the adiabatic error and run time.
引用
收藏
页数:19
相关论文
共 69 条
[1]  
ACCARDI L, ARXIVQUANTPH0012143
[2]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, Dorit ;
Van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM JOURNAL ON COMPUTING, 2007, 37 (01) :166-194
[3]   Adiabatic quantum state generation [J].
Aharonov, Dorit ;
Ta-Shma, Amnon .
SIAM JOURNAL ON COMPUTING, 2007, 37 (01) :47-82
[4]   Thermally assisted adiabatic quantum computation [J].
Amin, M. H. S. ;
Love, Peter J. ;
Truncik, C. J. S. .
PHYSICAL REVIEW LETTERS, 2008, 100 (06)
[5]   First-order quantum phase transition in adiabatic quantum computation [J].
Amin, M. H. S. ;
Choi, V. .
PHYSICAL REVIEW A, 2009, 80 (06)
[6]   Consistency of the Adiabatic Theorem [J].
Amin, M. H. S. .
PHYSICAL REVIEW LETTERS, 2009, 102 (22)
[7]   On the adiabatic quantum evolution of a single qubit [J].
Andrecut, M ;
Ali, MK .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (04) :447-452
[8]  
Arfken G.B., 2001, Mathematical methods for physicists
[9]   ADIABATIC THEOREMS AND APPLICATIONS TO THE QUANTUM HALL-EFFECT (VOL 110, PG 33, 1987) [J].
AVRON, JE ;
SEILER, R ;
YAFFE, LG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (03) :649-650
[10]   ADIABATIC THEOREMS AND APPLICATIONS TO THE QUANTUM HALL-EFFECT [J].
AVRON, JE ;
SEILER, R ;
YAFFE, LG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (01) :33-49