Accuracy versus run time in an adiabatic quantum search

被引:62
作者
Rezakhani, A. T. [1 ,2 ,3 ]
Pimachev, A. K. [1 ,2 ]
Lidar, D. A. [1 ,2 ,4 ,5 ]
机构
[1] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] Sharif Univ Technol, Dept Phys, Tehran, Iran
[4] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
[5] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
ALGORITHM; IMPLEMENTATION;
D O I
10.1103/PhysRevA.82.052305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Adiabatic quantum algorithms are characterized by their run time and accuracy. The relation between the two is essential for quantifying adiabatic algorithmic performance yet is often poorly understood. We study the dynamics of a continuous time, adiabatic quantum search algorithm and find rigorous results relating the accuracy and the run time. Proceeding with estimates, we show that under fairly general circumstances the adiabatic algorithmic error exhibits a behavior with two discernible regimes: The error decreases exponentially for short times and then decreases polynomially for longer times. We show that the well-known quadratic speedup over classical search is associated only with the exponential error regime. We illustrate the results through examples of evolution paths derived by minimization of the adiabatic error. We also discuss specific strategies for controlling the adiabatic error and run time.
引用
收藏
页数:19
相关论文
共 69 条
[41]   Fundamental Limit on the Rate of Quantum Dynamics: The Unified Bound Is Tight [J].
Levitin, Lev B. ;
Toffoli, Tommaso .
PHYSICAL REVIEW LETTERS, 2009, 103 (16)
[42]   Towards fault tolerant adiabatic quantum computation [J].
Lidar, Daniel A. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[43]   Adiabatic approximation with exponential accuracy for many-body systems and quantum computation [J].
Lidar, Daniel A. ;
Rezakhani, Ali T. ;
Hamma, Alioscia .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
[44]   PRECISE EXPONENTIAL ESTIMATES IN ADIABATIC THEORY [J].
MARTINEZ, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (08) :3889-3915
[45]   Inconsistency in the application of the adiabatic theorem [J].
Marzlin, KP ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2004, 93 (16) :160408-1
[46]  
Messiah A., 1999, Quantum Mechanics
[47]   Simple proof of equivalence between adiabatic quantum computation and the circuit model [J].
Mizel, Ari ;
Lidar, Daniel A. ;
Mitchell, Morgan .
PHYSICAL REVIEW LETTERS, 2007, 99 (07)
[48]  
Nakahara M., 2003, Geometry, Topology and Physics
[49]   LINEAR ADIABATIC THEORY - EXPONENTIAL ESTIMATES [J].
NENCIU, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (03) :479-496
[50]  
Nielsen M. A., 2000, Quantum Computation and Quantum Information