Adiabatic approximation with exponential accuracy for many-body systems and quantum computation

被引:132
作者
Lidar, Daniel A. [1 ,2 ,3 ,4 ]
Rezakhani, Ali T. [1 ,4 ]
Hamma, Alioscia [1 ,4 ,5 ,6 ]
机构
[1] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
[4] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[5] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[6] MIT, Elect Res Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
eigenvalues and eigenfunctions; many-body problems; quantum computing; GAP CONDITION; EVOLUTION; THEOREM; INVARIANCE;
D O I
10.1063/1.3236685
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a version of the adiabatic theorem that is especially suited for applications in adiabatic quantum computation, where it is reasonable to assume that the adiabatic interpolation between the initial and final Hamiltonians is controllable. Assuming that the Hamiltonian is analytic in a finite strip around the real-time axis, that some number of its time derivatives vanish at the initial and final times, and that the target adiabatic eigenstate is nondegenerate and separated by a gap from the rest of the spectrum, we show that one can obtain an error between the final adiabatic eigenstate and the actual time-evolved state which is exponentially small in the evolution time, where this time itself scales as the square of the norm of the time derivative of the Hamiltonian divided by the cube of the minimal gap.
引用
收藏
页数:26
相关论文
共 52 条
[1]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, Dorit ;
Van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM JOURNAL ON COMPUTING, 2007, 37 (01) :166-194
[2]   Decoherence in adiabatic quantum computation [J].
Amin, M. H. S. ;
Averin, Dmitri V. ;
Nesteroff, James A. .
PHYSICAL REVIEW A, 2009, 79 (02)
[3]  
[Anonymous], 1962, QUANTUM MECH
[4]  
[Anonymous], 1986, SPECTRAL THEORY SELF
[5]   Decoherence in a scalable adiabatic quantum computer [J].
Ashhab, S. ;
Johansson, J. R. ;
Nori, Franco .
PHYSICAL REVIEW A, 2006, 74 (05)
[6]   Adiabatic theorem without a gap condition [J].
Avron, JE ;
Elgart, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (02) :445-463
[7]   HISTORIES OF ADIABATIC QUANTUM TRANSITIONS [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 429 (1876) :61-72
[8]  
Bhatia Rajendra, 1997, Matrix Analysis: Graduate Texts in Mathematics, V169
[9]   Proof of Adiabatic law [J].
Born, M. ;
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4) :165-180
[10]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems