Adiabatic approximation with exponential accuracy for many-body systems and quantum computation

被引:132
作者
Lidar, Daniel A. [1 ,2 ,3 ,4 ]
Rezakhani, Ali T. [1 ,4 ]
Hamma, Alioscia [1 ,4 ,5 ,6 ]
机构
[1] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
[4] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[5] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[6] MIT, Elect Res Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
eigenvalues and eigenfunctions; many-body problems; quantum computing; GAP CONDITION; EVOLUTION; THEOREM; INVARIANCE;
D O I
10.1063/1.3236685
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a version of the adiabatic theorem that is especially suited for applications in adiabatic quantum computation, where it is reasonable to assume that the adiabatic interpolation between the initial and final Hamiltonians is controllable. Assuming that the Hamiltonian is analytic in a finite strip around the real-time axis, that some number of its time derivatives vanish at the initial and final times, and that the target adiabatic eigenstate is nondegenerate and separated by a gap from the rest of the spectrum, we show that one can obtain an error between the final adiabatic eigenstate and the actual time-evolved state which is exponentially small in the evolution time, where this time itself scales as the square of the norm of the time derivative of the Hamiltonian divided by the cube of the minimal gap.
引用
收藏
页数:26
相关论文
共 52 条
[21]   Error-correcting codes for adiabatic quantum computation [J].
Jordan, Stephen P. ;
Farhi, Edward ;
Shor, Peter W. .
PHYSICAL REVIEW A, 2006, 74 (05)
[22]   General adiabatic evolution with a gap condition [J].
Joye, Alain .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 275 (01) :139-162
[23]   ON THE ADIABATIC THEOREM OF QUANTUM MECHANICS [J].
KATO, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1950, 5 (06) :435-439
[24]   The complexity of the local Hamiltonian problem [J].
Kempe, J ;
Kitaev, A ;
Regev, O .
SIAM JOURNAL ON COMPUTING, 2006, 35 (05) :1070-1097
[25]   Adiabatic quantum computation and quantum phase transitions -: art. no. 062302 [J].
Latorre, JI ;
Orús, R .
PHYSICAL REVIEW A, 2004, 69 (06) :062302-1
[26]   ADIABATIC INVARIANCE TO ALL ORDERS [J].
LENARD, A .
ANNALS OF PHYSICS, 1959, 6 (03) :261-276
[27]   Towards fault tolerant adiabatic quantum computation [J].
Lidar, Daniel A. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[28]   Distance bounds on quantum dynamics [J].
Lidar, Daniel A. ;
Zanardi, Paolo ;
Khodjasteh, Kaveh .
PHYSICAL REVIEW A, 2008, 78 (01)
[29]   Inconsistency in the application of the adiabatic theorem [J].
Marzlin, KP ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2004, 93 (16) :160408-1
[30]   Simple proof of equivalence between adiabatic quantum computation and the circuit model [J].
Mizel, Ari ;
Lidar, Daniel A. ;
Mitchell, Morgan .
PHYSICAL REVIEW LETTERS, 2007, 99 (07)