机构:
Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USAUniv So Calif, Dept Chem, Los Angeles, CA 90089 USA
Rezakhani, A. T.
[1
,2
,3
,4
]
Kuo, W. -J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USAUniv So Calif, Dept Chem, Los Angeles, CA 90089 USA
Kuo, W. -J.
[1
,2
,3
,4
]
Hamma, A.
论文数: 0引用数: 0
h-index: 0
机构:
Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, CanadaUniv So Calif, Dept Chem, Los Angeles, CA 90089 USA
Hamma, A.
[5
]
Lidar, D. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USAUniv So Calif, Dept Chem, Los Angeles, CA 90089 USA
Lidar, D. A.
[1
,2
,3
,4
]
Zanardi, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USAUniv So Calif, Dept Chem, Los Angeles, CA 90089 USA
Zanardi, P.
[1
,2
,3
,4
]
机构:
[1] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
[4] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[5] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated through two examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance.