A novel multigrid based preconditioner for heterogeneous Helmholtz problems

被引:219
作者
Erlangga, Y [1 ]
Oosterlee, C [1 ]
Vuik, C [1 ]
机构
[1] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Delft, Netherlands
关键词
Helmholtz equation; nonconstant high wavenumber; complex multigrid preconditioner; Fourier analysis;
D O I
10.1137/040615195
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An iterative solution method, in the form of a preconditioner for a Krylov subspace method, is presented for the Helmholtz equation. The preconditioner is based on a Helmholtz-type differential operator with a complex term. A multigrid iteration is used for approximately inverting the preconditioner. The choice of multigrid components for the corresponding preconditioning matrix with a complex diagonal is validated with Fourier analysis. Multigrid analysis results are verified by numerical experiments. High wave number Helmholtz problems in heterogeneous media are solved indicating the performance of the preconditioner.
引用
收藏
页码:1471 / 1492
页数:22
相关论文
共 31 条
[21]   First-order system least-squares for the Helmholtz equation [J].
Lee, B ;
Manteuffel, TA ;
McCormick, SF ;
Ruge, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (05) :1927-1949
[22]   Separation-of-variables as a preconditioner for an iterative Helmholtz solver [J].
Plessix, RE ;
Mulder, WA .
APPLIED NUMERICAL MATHEMATICS, 2003, 44 (03) :385-400
[23]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058
[24]  
Sleijpen G.L.G., 1993, Electron. Trans. Numer. Anal, V1, P11
[25]  
STUBEN K, 1982, LECT NOTES MATH, V960, P1
[26]  
Trottenberg U., 2001, MULTIGRID
[27]  
Turkel E, 2001, NATO SC S SS III C S, V177, P319
[28]   GMRESR: a Family of Nested GMRES Methods [J].
van der Vorst, H. A. ;
Vuik, C. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1994, 1 (04) :369-386
[29]   BI-CGSTAB - A FAST AND SMOOTHLY CONVERGING VARIANT OF BI-CG FOR THE SOLUTION OF NONSYMMETRIC LINEAR-SYSTEMS [J].
VANDERVORST, HA .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (02) :631-644
[30]   Fourier analysis of GMRES(m) preconditioned by multigrid [J].
Wienands, R ;
Oosterlee, CW ;
Washio, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) :582-603