Sequence relationships, conserved domains and expression patterns for maize homologs of the polycomb group genes E(z), esc, and E(Pc)

被引:65
作者
Springer, NM
Danilevskaya, ON
Hermon, P
Helentjaris, TG
Phillips, RL
Kaeppler, HF
Kaeppler, SM
机构
[1] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA
[2] Pioneer HiBred Int Inc, Johnston, IA 50131 USA
[3] Univ Minnesota, Dept Agron, St Paul, MN 55108 USA
关键词
D O I
10.1104/pp.010742
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Polycomb group (PcG) proteins play an important role in developmental and epigenetic regulation of gene expression in fruit fly (Drosophila melanogaster) and mammals. Recent evidence has shown that Arabidopsis homologs of PcG proteins are also important for the regulation of plant development. The objective of this study was to characterize the PcG homologs in maize (Zea mays). The 11 cloned PcG proteins from fruit fly and the Enhancer of zeste [E(z)], extra sex combs (esc), and Enhancer of Polycomb [E(Pc)] homologs from Arabidopsis were used as queries to perform TBLASTN searches against the public maize expressed sequence tag database and the Pioneer Hi-Bred database. Maize homologs were found for E(z), esc, and E(Pc), but not for Polycomb, pleiohomeotic, Posterior sex combs, Polycomblike, Additional sex combs, Sex combs on midleg, polyhometoic, or multi sex combs. Transcripts of the three maize Enhancer of zeste-like genes, Mez1, Mez2, and Mez3, were detected in all tissues tested, and the Mez2 transcript is alternatively spliced in a tissue-dependent pattern. Zea mays fertilization independent endosperm1 (ZmFie1) expression was limited to developing embryos and endosperms, whereas ZmFie2 expression was found throughout plant development. The conservation of E(z) and esc homologs across kingdoms indicates that these genes likely play a conserved role in repressing gene expression.
引用
收藏
页码:1332 / 1345
页数:14
相关论文
共 59 条
[1]  
Aasland R, 1996, TRENDS BIOCHEM SCI, V21, P87, DOI 10.1016/0968-0004(96)30009-1
[2]  
Akasaka T, 1996, DEVELOPMENT, V122, P1513
[3]   TRANSFORMATION OF AXIAL SKELETON DUE TO OVEREXPRESSION OF BMI-1 IN TRANSGENIC MICE [J].
ALKEMA, MJ ;
VANDERLUGT, NMT ;
BOBELDIJK, RC ;
BERNS, A ;
VANLOHUIZEN, M .
NATURE, 1995, 374 (6524) :724-727
[4]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[5]   The Polycomb group - no longer an exclusive club? [J].
Brock, HW ;
van Lohuizen, M .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2001, 11 (02) :175-181
[6]   GENETIC AND MOLECULAR CHARACTERIZATION OF EMBRYONIC MUTANTS IDENTIFIED FOLLOWING SEED TRANSFORMATION IN ARABIDOPSIS [J].
CASTLE, LA ;
ERRAMPALLI, D ;
ATHERTON, TL ;
FRANZMANN, LH ;
YOON, ES ;
MEINKE, DW .
MOLECULAR & GENERAL GENETICS, 1993, 241 (5-6) :504-514
[7]   Fertilization-independent seed development in Arabidopsis thaliana [J].
Chaudhury, AM ;
Ming, L ;
Miller, C ;
Craig, S ;
Dennis, ES ;
Peacock, WJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :4223-4228
[8]   Acetylation and chromosomal functions [J].
Cheung, WL ;
Briggs, SD ;
Allis, CD .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (03) :326-333
[9]  
Core N, 1997, DEVELOPMENT, V124, P721
[10]   Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development [J].
Finnegan, EJ ;
Peacock, WJ ;
Dennis, ES .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8449-8454