Observers for a Class of Nonlinear Singular Systems

被引:73
作者
Darouach, M. [1 ]
Boutat-Baddas, L. [1 ]
机构
[1] Nancy Univ, IUT Longwy, CRAN CNRS, UMR 7039, F-54400 Cones Et Romain, France
关键词
Existence conditions; full order; generalized Sylvester equations; linear matrix inequalities (LMIs); minimal order; reduced order; singular systems; stability; unknown input estimation;
D O I
10.1109/TAC.2008.2007868
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This technical note considers the observers design for a class of nonlinear singular systems. The approach is based on the new parameterization of the generalized Sylvester equations solutions. The conditions for the existence of these observers are given and sufficient conditions for their stability are derived using linear matrix inequalities (LMIs) formulation. Reduced-order, minimal-order and full-order observers are designed by a unified method. A numerical example is presented to demonstrate the effectiveness of the developed method.
引用
收藏
页码:2627 / 2633
页数:7
相关论文
共 19 条
[11]   Reduced-order observer design for descriptor systems with unknown inputs [J].
Darouach, M ;
Zasadzinski, M ;
Hayar, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (07) :1068-1072
[12]   State and input simultaneous estimation for a class of nonlinear systems [J].
Ha, QP ;
Trinh, H .
AUTOMATICA, 2004, 40 (10) :1779-1785
[13]   NON-LINEAR OBSERVER DESIGN BY TRANSFORMATION INTO A GENERALIZED OBSERVER CANONICAL FORM [J].
KELLER, H .
INTERNATIONAL JOURNAL OF CONTROL, 1987, 46 (06) :1915-1930
[14]   NONLINEAR OBSERVERS WITH LINEARIZABLE ERROR DYNAMICS [J].
KRENER, AJ ;
RESPONDEK, W .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (02) :197-216
[15]   Full-order and reduced-order observers for Lipschitz descriptor systems: The unified LMI approach [J].
Lu, Guoping ;
Ho, Daniel W. C. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (07) :563-567
[16]  
Luenberger DJ., 1979, J EC DYNAM CONTR, V1, P219, DOI DOI 10.1016/S0165-1889(79)80009-3
[17]   Observers for Lipschitz nonlinear systems [J].
Rajamani, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (03) :397-401
[18]   NONLINEAR OBSERVER DESIGN BY OBSERVER ERROR LINEARIZATION [J].
XIA, XH ;
GAO, WB .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (01) :199-216
[19]   A note on observers for Lipschitz nonlinear systems [J].
Zhu, FL ;
Han, ZZ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (10) :1751-1754