Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics

被引:192
作者
Deringer, Volker L. [1 ,2 ]
Bernstein, Noam [3 ]
Bartok, Albert P. [4 ]
Cliffe, Matthew J. [2 ]
Kerber, Rachel N. [2 ]
Marbella, Lauren E. [2 ]
Grey, Clare P. [2 ]
Elliott, Stephen R. [2 ]
Csanyi, Gabor [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[3] US Naval Res Lab, Ctr Mat Phys & Technol, Washington, DC 20375 USA
[4] Rutherford Appleton Lab, Sci Comp Dept, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2018年 / 9卷 / 11期
基金
英国工程与自然科学研究理事会;
关键词
THIN-FILM TRANSISTORS; NMR PARAMETERS; ORDER; SIMULATIONS; MODELS; CRYSTALLIZATION; RELAXATION; ELECTRODES; NANOWIRES; SOLIDS;
D O I
10.1021/acs.jpclett.8b00902
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Amorphous silicon (a-Si) is a widely studied noncrystalline material, and yet the subtle details of its atomistic structure are still unclear. Here, we show that accurate structural models of a-Si can be obtained using a machine-learning-based interatomic potential. Our best a-Si network is obtained by simulated cooling from the melt at a rate of 10(11)K /s(that is, on the 10 ns time scale), contains less than 2% defects, and agrees with experiments regarding excess energies, diffraction data, and Si-29 NMR chemical shifts. We show that this level of quality is impossible to achieve with faster quench simulations. We then generate a 4096-atom system that correctly reproduces the magnitude of the first sharp diffraction peak (FSDP) in the structure factor, achieving the closest agreement with experiments to date. Our study demonstrates the broader impact of machine-learning potentials for elucidating structures and properties of technologically important amorphous materials.
引用
收藏
页码:2879 / 2885
页数:13
相关论文
共 54 条
  • [1] Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm
    Artrith, Nongnuch
    Urban, Alexander
    Ceder, Gerbrand
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24)
  • [2] High-quality continuous random networks
    Barkema, GT
    Mousseau, N
    [J]. PHYSICAL REVIEW B, 2000, 62 (08): : 4985 - 4990
  • [3] Bartok A. P., 2018, CONDENS MATTER
  • [4] Machine learning unifies the modeling of materials and molecules
    Bartok, Albert P.
    De, Sandip
    Poelking, Carl
    Bernstein, Noam
    Kermode, James R.
    Csanyi, Gabor
    Ceriotti, Michele
    [J]. SCIENCE ADVANCES, 2017, 3 (12):
  • [5] On representing chemical environments
    Bartok, Albert P.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 87 (18)
  • [6] Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
    Bartok, Albert P.
    Payne, Mike C.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [7] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [8] Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential
    Behler, Joerg
    Martonak, Roman
    Donadio, Davide
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (18)
  • [9] Structural model of amorphous silicon annealed with tight binding
    Bernstein, N.
    Feldman, J. L.
    Fornari, M.
    [J]. PHYSICAL REVIEW B, 2006, 74 (20):
  • [10] Reverse Monte Carlo modeling of amorphous silicon
    Biswas, P
    Atta-Fynn, R
    Drabold, DA
    [J]. PHYSICAL REVIEW B, 2004, 69 (19): : 195207 - 1