Immobilization of laccase onto poly(glycidylmethacrylate) brush grafted poly(hydroxyethylmethacrylate) films: Enzymatic oxidation of phenolic compounds

被引:98
作者
Bayramoglu, Guelay [1 ]
Arica, M. Yakup [1 ]
机构
[1] Gazi Univ, Fac Arts & Sci, Biochem Proc & Biomat Res Lab, TR-06500 Ankara, Turkey
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2009年 / 29卷 / 06期
关键词
ATRP; Polymer brushes; Immobilized enzyme; Adsorption; Laccase; Phenolic compounds; GLUCOSE-OXIDASE; REVERSIBLE IMMOBILIZATION; POLYPHENOL OXIDASE; POLYMER BRUSHES; CANDIDA-RUGOSA; HIGH-CAPACITY; MEMBRANES; TYROSINASE; STABILITY; REMOVAL;
D O I
10.1016/j.msec.2009.03.011
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Poly(hydroxyethylmethacrylate), p(HEMA) films were prepared via UV-initiated photo-polymerization. After activation of the hydroxyl groups of p(HEMA) by bromination, surface-initiated atom transfer radical polymerization (ATRP) of glycidylmethacrylate was conducted in dioxane/bipyridine mixture with CuBr as catalyst at 65 degrees C. The epoxy groups of the poly(glycidylmethacrylate) brushes were converted into amino groups with the reaction of ammonia. The modified p(HEMA-g-GMA)-NH2 films were used as an ion-exchange support for the immobilization of laccase. The influence of pH and initial laccase concentration on the immobilization capacity of the p(HEMA-g-GMA)-NH2 films has been investigated. The amount of immobilized laccase on the p(HEMA-g-GMA)-NH2 films was determined as 139 mu g/cm(2) films. The recovered activity of the immobilized laccase on the fibrous polymer grafted films was about 71% compared to free enzyme. The maximum activity (V-max) and Michealis constant (K-m) of laccase immobilized on the films, were found to be 15.4 U/mg and 23 mM, respectively. Finally, the immobilized laccase was operated in a batch system for enzymatic oxidation of phenol, p-chlorophenol and aniline. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1990 / 1997
页数:8
相关论文
共 50 条
[1]   Chitosan-grafted poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) membranes for reversible enzyme immobilization [J].
Arica, M. Yakup ;
Yilmaz, Meltem ;
Bayramoglu, Gulay .
JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 103 (05) :3084-3093
[2]   Invertase reversibly immobilized onto polyethylenimine-grafted poly(GMA-MMA) beads for sucrose hydrolysis [J].
Arica, MY ;
Bayramoglu, G .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2006, 38 (3-6) :131-138
[3]   Characterisation of tyrosinase immobilised onto spacer-arm attached glycidyl methacrylate-based reactive microbeads [J].
Arica, MY ;
Bayramoglu, G ;
Biçak, N .
PROCESS BIOCHEMISTRY, 2004, 39 (12) :2007-2017
[4]   Polyethyleneimine-grafted poly (hydroxyethyl methacrylate-co-glycidyl methacrylate) membranes for reversible glucose oxidase immobilization [J].
Arica, MY ;
Bayramoglu, G .
BIOCHEMICAL ENGINEERING JOURNAL, 2004, 20 (01) :73-77
[5]   Reversible immobilization of tyrosinase onto polyethyleneimine-grafted and Cu(II) chelated poly(HEMA-co-GMA) reactive membranes [J].
Arica, MY ;
Bayramoglu, G .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2004, 27 (4-6) :255-265
[6]  
Arica MY, 2000, POLYM INT, V49, P775
[7]   Preparation of cross-linked tyrosinase aggregates [J].
Aytar, Burcu Selin ;
Bakir, Ufuk .
PROCESS BIOCHEMISTRY, 2008, 43 (02) :125-131
[8]   Immobilization of Candida rugosa lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) microspheres [J].
Bayramoglu, G ;
Kaya, B ;
Arica, MY .
FOOD CHEMISTRY, 2005, 92 (02) :261-268
[9]   Immobilization of a thermostable α-amylase onto reactive membranes:: kinetics characterization and application to continuous starch hydrolysis [J].
Bayramoglu, G ;
Yilmaz, M ;
Arica, MY .
FOOD CHEMISTRY, 2004, 84 (04) :591-599
[10]   Enzymatic removal of phenol and p-chlorophenol in enzyme reactor:: Horseradish peroxidase immobilized on magnetic beads [J].
Bayramoglu, Guelay ;
Arica, M. Yakup .
JOURNAL OF HAZARDOUS MATERIALS, 2008, 156 (1-3) :148-155