High-mobility low band-to-band-tunneling strained-germanium double-gate heterostructure FETs: Simulations

被引:77
作者
Krishnamohan, T [1 ]
Kim, D
Nguyen, CD
Jungemann, C
Nishi, Y
Saraswat, KC
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Tech Univ Carolo Wilhelmina Braunschweig, D-38106 Braunschweig, Germany
关键词
band-to-band tunneling (BTBT); center-channel MOSFET (CCFET); double-gate MOSFET (DG MOSFET); germanium (Ge); HEMT; heterostructure; high-k; high mobility; high performance; HOI; k.p; low power; Luttinger-Kohn; MODFET; Monte Carlo; MOSFET; MOS-MODFET; quantum well; SiGe; silicon; silicon-on-insulator (SOI); strain; strained-silicon-directly-on-insulator (SSDOI); terahertz; transistor; trap-assisted tunneling (TAT);
D O I
10.1109/TED.2006.872367
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Large hand-to-hand tunneling (BTBT) leakage currents can ultimately limit the scalability of high-mobility (small-bandgap) materials. This paper presents a novel heterostructure double-gate FET (DGFET) that can significantly reduce BTBT leakage currents while retaining its high mobility, making it suitable for scaling into the sub-20-nin regime. In particular, through one-dimensional Poisson-Schrodinger, full-band Monte Carlo, and detailed BTBT simulations, the tradeoffs between carrier transport, electrostatics, and BTBT leakage in high-mobility sub-20-nm Si-strained SiGe-Si (high germanium concentration) heterostructure PMOS DGFETs are thoroughly analyzed. The results show a dramatic (> 100x) reduction in BTBT and an excellent electrostatic control of the channel while maintaining very high drive currents and switching frequencies in these nanoscale transistors.
引用
收藏
页码:1000 / 1009
页数:10
相关论文
共 19 条
[1]   Epitaxial silicon and germanium on buried insulator heterostructures and devices [J].
Bojarczuk, NA ;
Copel, M ;
Guha, S ;
Narayanan, V ;
Preisler, EJ ;
Ross, FM ;
Shang, H .
APPLIED PHYSICS LETTERS, 2003, 83 (26) :5443-5445
[2]  
Chau R, 2004, 2004 4TH IEEE CONFERENCE ON NANOTECHNOLOGY, P3
[3]  
Datta S., 2003, IEDM, p28.1.1
[4]   Band structure, deformation potentals, and carrier mobility in strained Si, Ge, and SiGe alloys [J].
Fischetti, MV ;
Laux, SE .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (04) :2234-2252
[5]   MONTE-CARLO SIMULATION OF TRANSPORT IN TECHNOLOGICALLY SIGNIFICANT SEMICONDUCTORS OF THE DIAMOND AND ZINCBLENDE STRUCTURES .1. HOMOGENEOUS TRANSPORT [J].
FISCHETTI, MV .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1991, 38 (03) :634-649
[6]   ABSORPTION AND EMISSION OF LIGHT IN NANOSCALE SILICON STRUCTURES [J].
HYBERTSEN, MS .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1514-1517
[7]  
Jungemann C., 2003, COMP MICROE
[8]   THEORY OF TUNNELING [J].
KANE, EO .
JOURNAL OF APPLIED PHYSICS, 1961, 32 (01) :83-+
[9]  
Krishnamohan T, 2005, 2005 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, P82
[10]  
Krishnamohan T, 2004, SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES 2004, P191