Proteomics-inferred genome typing (PIGT) demonstrates inter-population recombination as a strategy for environmental adaptation

被引:48
作者
Denef, Vincent J. [1 ]
VerBerkmoes, Nathan C. [2 ]
Shah, Manesh B. [2 ]
Abraham, Paul [2 ]
Lefsrud, Mark [2 ]
Hettich, Robert L. [2 ]
Banfield, Jillian F. [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
ESCHERICHIA-COLI; COMMUNITY PROTEOMICS; BACTERIA; GENE; MICROORGANISMS; DNA; BACTERIOPLANKTON; SPECIATION; BACILLUS; DATABASE;
D O I
10.1111/j.1462-2920.2008.01769.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Analyses of ecological and evolutionary processes that shape microbial consortia are facilitated by comprehensive studies of ecosystems with low species richness. In the current study we evaluated the role of recombination in altering the fitness of chemoautotrophic bacteria in their natural environment. Proteomics-inferred genome typing (PIGT) was used to genotype the dominant Leptospirillum group II populations in 27 biofilms sampled from six locations in the Richmond Mine acid mine drainage system (Iron Mountain, CA) over a 4-year period. We observed six distinct genotypes that are recombinants comprised of segments from two 'parental' genotypes. Community genomic analyses revealed additional low abundance recombinant variants. The dominance of some genotypes despite a larger available genome pool, and patterns of spatiotemporal distribution within the ecosystem, indicate selection for distinct recombinants. Genes involved in motility, signal transduction and transport were over-represented in the tens to hundreds of kilobase recombinant blocks, whereas core metabolic functions were significantly under-represented. Our findings demonstrate the power of PIGT and reveal that recombination is a mechanism for fine-scale adaptation in this system.
引用
收藏
页码:313 / 325
页数:13
相关论文
共 44 条
[21]  
Majewski J, 1999, GENETICS, V153, P1525
[22]   Genome-wide detection and analysis of homologous recombination among sequenced strains of Escherichia coli [J].
Mau, Bob ;
Glasner, Jeremy D. ;
Darling, Aaron E. ;
Perna, Nicole T. .
GENOME BIOLOGY, 2006, 7 (05)
[23]   Recombination in thermotoga: Implications for species concepts and biogeography [J].
Nesbo, CL ;
Dlutek, M ;
Doolittle, WF .
GENETICS, 2006, 172 (02) :759-769
[24]   Frequent recombination in a saltern population of Halorubrum [J].
Papke, RT ;
Koenig, JE ;
Rodríguez-Valera, F ;
Doolittle, WF .
SCIENCE, 2004, 306 (5703) :1928-1929
[25]   Analysis of environmental transcriptomes by DNA microarrays [J].
Parro, Victor ;
Moreno-Paz, Mercedes ;
Gonzalez-Toril, Elena .
ENVIRONMENTAL MICROBIOLOGY, 2007, 9 (02) :453-464
[26]   InterProScan: protein domains identifier [J].
Quevillon, E ;
Silventoinen, V ;
Pillai, S ;
Harte, N ;
Mulder, N ;
Apweiler, R ;
Lopez, R .
NUCLEIC ACIDS RESEARCH, 2005, 33 :W116-W120
[27]   Community proteomics of a natural microbial biofilm [J].
Ram, RJ ;
VerBerkmoes, NC ;
Thelen, MP ;
Tyson, GW ;
Baker, BJ ;
Blake, RC ;
Shah, M ;
Hettich, RL ;
Banfield, JF .
SCIENCE, 2005, 308 (5730) :1915-1920
[28]   Temporal fragmentation of speciation in bacteria [J].
Retchless, Adam C. ;
Lawrence, Jeffrey G. .
SCIENCE, 2007, 317 (5841) :1093-1096
[29]   Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms [J].
Rondon, MR ;
August, PR ;
Bettermann, AD ;
Brady, SF ;
Grossman, TH ;
Liles, MR ;
Loiacono, KA ;
Lynch, BA ;
MacNeil, IA ;
Minor, C ;
Tiong, CL ;
Gilman, M ;
Osburne, MS ;
Clardy, J ;
Handelsman, J ;
Goodman, RM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (06) :2541-2547
[30]   Convergence of Campylobacter species:: Implications for bacterial evolution [J].
Sheppard, Samuel K. ;
McCarthy, Noel D. ;
Falush, Daniel ;
Maiden, Martin C. J. .
SCIENCE, 2008, 320 (5873) :237-239