An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images

被引:101
作者
Li, Hailiang [1 ]
Wang, Jian [2 ]
Shi, Yujian [3 ]
Gu, Wanrong [4 ]
Mao, Yijun [4 ]
Wang, Yonghua [5 ]
Liu, Weiwei [6 ]
Zhang, Jiajie [2 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Jinan Univ, Coll Informat Sci & Technol, Coll Cyber Secur, Guangzhou 510632, Guangdong, Peoples R China
[3] TopGene Tech Co Ltd, Guangzhou 510627, Guangdong, Peoples R China
[4] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Guangdong, Peoples R China
[5] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
[6] Sun Yat Sen Univ, Ctr Canc, Guangzhou 510080, Guangdong, Peoples R China
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
美国国家科学基金会;
关键词
NEURAL-NETWORKS; BREAST-CANCER; FEATURES; CLASSIFICATION; ACCURATE;
D O I
10.1038/s41598-018-25005-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Unlike daily routine images, ultrasound images are usually monochrome and low-resolution. In ultrasound images, the cancer regions are usually blurred, vague margin and irregular in shape. Moreover, the features of cancer region are very similar to normal or benign tissues. Therefore, training ultrasound images with original Convolutional Neural Network (CNN) directly is not satisfactory. In our study, inspired by state-of-the-art object detection network Faster R-CNN, we develop a detector which is more suitable for thyroid papillary carcinoma detection in ultrasound images. In order to improve the accuracy of the detection, we add a spatial constrained layer to CNN so that the detector can extract the features of surrounding region in which the cancer regions are residing. In addition, by concatenating the shallow and deep layers of the CNN, the detector can detect blurrier or smaller cancer regions. The experiments demonstrate that the potential of this new methodology can reduce the workload for pathologists and increase the objectivity of diagnoses. We find that 93:5% of papillary thyroid carcinoma regions could be detected automatically while 81:5% of benign and normal tissue could be excluded without the use of any additional immunohistochemical markers or human intervention.
引用
收藏
页数:12
相关论文
共 39 条
[1]   Plaque Tissue Characterization and Classification in Ultrasound Carotid Scans: A Paradigm for Vascular Feature Amalgamation [J].
Acharya, U. Rajendra ;
Krishnan, M. Muthu Rama ;
Sree, S. Vinitha ;
Sanches, Joao ;
Shafique, Shoaib ;
Nicolaides, Andrew ;
Pedro, Luis Mendes ;
Suri, Jasjit S. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2013, 62 (02) :392-400
[2]   An Accurate and Generalized Approach to Plaque Characterization in 346 Carotid Ultrasound Scans [J].
Acharya, U. Rajendra ;
Faust, Oliver ;
Sree, S. Vinitha ;
Molinari, Filippo ;
Saba, Luca ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (04) :1045-1053
[3]  
Ahan S., 2007, COMPUT BIOL MED, V37, P415, DOI DOI 10.1016/j.compbiomed.2006.05.003
[4]  
[Anonymous], BREAST DENSITY SCORI
[5]  
[Anonymous], P EUR C COMP VIS
[6]  
[Anonymous], IEEE ACCESS
[7]   Multi-Field-of-View Framework for Distinguishing Tumor Grade in ER plus Breast Cancer From Entire Histopathology Slides [J].
Basavanhally, Ajay ;
Ganesan, Shridar ;
Feldman, Michael ;
Shih, Natalie ;
Mies, Carolyn ;
Tomaszewski, John ;
Madabhushi, Anant .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (08) :2089-2099
[8]   Automatic detection of invasive ductal carcinoma in whole slide images with Convolutional Neural Networks [J].
Cruz-Roa, Angel ;
Basavanhally, Ajay ;
Gonzalez, Fabio ;
Gilmore, Hannah ;
Feldman, Michael ;
Ganesan, Shridar ;
Shih, Natalie ;
Tomaszewski, John ;
Madabhushi, Anant .
MEDICAL IMAGING 2014: DIGITAL PATHOLOGY, 2014, 9041
[9]  
Erhan D., 2009, University of Montreal
[10]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338