Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth

被引:200
作者
Steyn, AJC
Collins, DM
Hondalus, MK
Jacobs, WR
Kawakami, RP
Bloom, BR
机构
[1] Harvard Univ, Sch Publ Hlth, Off Dean, Dept Immunol & Infect Dis, Boston, MA 02115 USA
[2] AgResearch, Wallaceville Anim Res Ctr, Upper Hutt, New Zealand
[3] Yeshiva Univ Albert Einstein Coll Med, Howard Hughes Med Inst, Bronx, NY 10461 USA
关键词
D O I
10.1073/pnas.052705399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Previous work established that the principal sigma factor (RpoV) of virulent Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex, restores virulence to an attenuated strain containing a point mutation (Arg-515-->His) in the 4.2 domain of RpoV. We used the 4.2 domain of RpoV as bait in a yeast two-hybrid screen of an M. tuberculosis H37Rv library and identified a putative transcription factor, WhiB3, which selectively interacts with the 4.2 domain of RpoV in virulent strains but not with the mutated (Arg515-->His) allele. Infection of mice and guinea pigs with a M. tuberculosis H37Rv whiB3 deletion mutant strain showed that whiB3 is not necessary for in vivo bacterial replication in either animal model. In contrast, an M. bovis whiB3 deletion mutant was completely attenuated for growth in guinea pigs. However, we found that immunocompetent mice infected with the M, tuberculosis H37Rv whiB3 mutant strain had significantly longer mean survival times as compared with mice challenged with wild-type M. tuberculosis. Remarkably, the bacterial organ burdens of both mutant and wild-type infected mice were identical during the acute and persistent phases of infection. Our results imply that M. tuberculosis replication per se is not a sufficient condition for virulence in vivo. They also indicate a different role for M. bovis and M. tuberculosis whiB3 genes in pathogenesis generated in different animal models. We propose that M. tuberculosis WhiB3 functions as a transcription factor regulating genes that influence the immune response of the host.
引用
收藏
页码:3147 / 3152
页数:6
相关论文
共 36 条
[1]   Conditionally replicating mycobacteriophages: A system for transposon delivery to Mycobacterium tuberculosis [J].
Bardarov, S ;
Kriakov, J ;
Carriere, C ;
Yu, SW ;
Vaamonde, C ;
McAdam, RA ;
Bloom, BR ;
Hatfull, GF ;
Jacobs, WR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (20) :10961-10966
[2]  
Barnes Peter F., 1994, P417
[3]   Comparative genomics of BCG vaccines by whole-genome DNA microarray [J].
Behr, MA ;
Wilson, MA ;
Gill, WP ;
Salamon, H ;
Schoolnik, GK ;
Rane, S ;
Small, PM .
SCIENCE, 1999, 284 (5419) :1520-1523
[4]   Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene [J].
Berthet, FX ;
Lagranderie, M ;
Gounon, P ;
Laurent-Winter, C ;
Ensergueix, D ;
Chavarot, P ;
Thouron, F ;
Maranghi, E ;
Pelicic, V ;
Portnoï, D ;
Marchal, G ;
Gicquel, B .
SCIENCE, 1998, 282 (5389) :759-762
[5]   A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica [J].
Buchmeier, N ;
Blanc-Potard, A ;
Ehrt, S ;
Piddington, D ;
Riley, L ;
Groisman, EA .
MOLECULAR MICROBIOLOGY, 2000, 35 (06) :1375-1382
[6]   MUTATION OF THE PRINCIPAL SIGMA-FACTOR CAUSES LOSS OF VIRULENCE IN A STRAIN OF THE MYCOBACTERIUM-TUBERCULOSIS COMPLEX [J].
COLLINS, DM ;
KAWAKAMI, RP ;
DELISLE, GW ;
PASCOPELLA, L ;
BLOOM, BR ;
JACOBS, WR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) :8036-8040
[7]   Complex lipid determine tissue specific replication of Mycobacterium tuberculosis in mice [J].
Cox, JS ;
Chen, B ;
McNeil, M ;
Jacobs, WR .
NATURE, 1999, 402 (6757) :79-83
[8]   Mycobacterium tuberculosis in the post-genomic age [J].
Domenech, P ;
Barry, CE ;
Cole, ST .
CURRENT OPINION IN MICROBIOLOGY, 2001, 4 (01) :28-34
[9]   Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice [J].
Dubnau, E ;
Chan, J ;
Raynaud, C ;
Mohan, VP ;
Lanéelle, MA ;
Yu, KM ;
Quémard, A ;
Smith, I ;
Daffé, M .
MOLECULAR MICROBIOLOGY, 2000, 36 (03) :630-637