Contraction-stimulated glucose transport in rat skeletal muscle is sustained despite reversal of increased PAS-phosphorylation of AS160 and TBC1D1

被引:25
作者
Funai, Katsuhiko [1 ]
Cartee, Gregory D. [1 ]
机构
[1] Univ Michigan, Muscle Biol Lab, Div Kinesiol, Ann Arbor, MI 48109 USA
关键词
exercise; adenosine 5 '-monophosphate-activated protein kinase; Ca2+/calmodulin-dependent kinase II; Akt;
D O I
10.1152/japplphysiol.90838.2008
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Funai K, Cartee GD. Contraction-stimulated glucose transport in rat skeletal muscle is sustained despite reversal of increased PAS-phosphorylation of AS160 and TBC1D1. J Appl Physiol 105: 1788-1795, 2008. First published September 25, 2008; doi:10.1152/japplphysiol.90838.2008. - Akt substrate of 160 kDa (AS160), the most distal insulin signaling protein known to be important for insulin-stimulated glucose transport, becomes phosphorylated with skeletal muscle contraction. Akt, AMP-activated protein kinase (AMPK), and Ca2+/calmodulin-dependent kinase II (CaMKII) have been implicated in regulating AS160 and/or glucose transport. Our primary aim was to assess time courses for contraction's effects on glucose transport and phosphorylation of Akt, AMPK, CaMKII, and AS160. Isolated rat epitrochlearis muscles were studied without or with contraction (5, 10, 20, 40, 60 min). Phospho-Akt substrate (PAS) antibody was used to measure AS160 PAS phosphorylation by quantifying the similar to 160-kDa band on PAS immunoblots (PAS-160); a separate band at 150 kDa (PAS-150) that responded similarly to contraction was also identified. Using specific antibodies for AS160 or TBC1D1 on immunoblots, the molecular mass of PAS-160 was found to correspond with that of AS160 and not TBC1D1, whereas PAS-150 corresponded with TBC1D1 and not AS160. Furthermore, supernatant of sample immunodepleted with anti-AS160 had greatly reduced PAS-160, whereas supernatant of sample immunodepleted with anti-TBC1D1 had greatly reduced PAS-150, providing further evidence that PAS-160 and PAS-150 correspond with PAS-AS160 and PAS-TBC1D1, respectively. Contraction induced transient increases in PAS-160, PAS-150, phospho-glycogen synthase kinase 3 (an Akt substrate) and phospho-CaMKII; glucose transport and phospho-AMPK increases were maintained for 60 min of contraction. These data suggest the following: 1) PAS-160 (AS160) and PAS-150 (TBC1D1) respond to contraction transiently, despite sustained stimulation; 2) continual AMPK activation was insufficient for sustained increase in PAS-160 or PAS-150; and 3) sustained elevation of PAS-160 or PAS-150 was unnecessary to maintain contraction-stimulated glucose transport for up to 60 min.
引用
收藏
页码:1788 / 1795
页数:8
相关论文
共 36 条
[1]   Prior exercise increases phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle [J].
Arias, Edward B. ;
Kim, Junghoon ;
Funai, Katsuhiko ;
Cartee, Gregory D. .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2007, 292 (04) :E1191-E1200
[2]   The selectivity of protein kinase inhibitors: a further update [J].
Bain, Jenny ;
Plater, Lorna ;
Elliott, Matt ;
Shpiro, Natalia ;
Hastie, C. James ;
Mclauchlan, Hilary ;
Klevernic, Iva ;
Arthur, J. Simon C. ;
Alessi, Dario R. ;
Cohen, Philip .
BIOCHEMICAL JOURNAL, 2007, 408 :297-315
[3]   Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity [J].
Bruss, MD ;
Arias, EB ;
Lienhard, GE ;
Cartee, GD .
DIABETES, 2005, 54 (01) :41-50
[4]   GROWTH-HORMONE REDUCES GLUCOSE-TRANSPORT BUT NOT GLUT-1 OR GLUT-4 IN ADULT AND OLD RATS [J].
CARTEE, GD ;
BOHN, EE .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1995, 268 (05) :E902-E909
[5]   Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport [J].
Cartee, Gregory D. ;
Wojtaszewski, Jorgen F. P. .
APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, 2007, 32 (03) :557-566
[6]   Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation [J].
Chavez, Jose A. ;
Roach, William G. ;
Keller, Susanna R. ;
Lane, William S. ;
Lienhard, Gustav E. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (14) :9187-9195
[7]   MUSCLE GLUCOSE-TRANSPORT - INTERACTIONS OF INVITRO CONTRACTIONS, INSULIN, AND EXERCISE [J].
CONSTABLE, SH ;
FAVIER, RJ ;
CARTEE, GD ;
YOUNG, DA ;
HOLLOSZY, JO .
JOURNAL OF APPLIED PHYSIOLOGY, 1988, 64 (06) :2329-2332
[8]  
DOUEN AG, 1990, J BIOL CHEM, V265, P13427
[9]   Role of kallikrein-kininogen system in insulin-stimulated glucose transport after muscle contractions [J].
Dumke, CL ;
Kim, J ;
Arias, EB ;
Cartee, GD .
JOURNAL OF APPLIED PHYSIOLOGY, 2002, 92 (02) :657-664
[10]   Insulin signaling diverges into Akt-dependent and -independent signals to regulate the recruitment/docking and the fusion of GLUT4 vesicles to the plasma membrane [J].
Gonzalez, Eva ;
McGraw, Timothy E. .
MOLECULAR BIOLOGY OF THE CELL, 2006, 17 (10) :4484-4493