The maximal generic number of pure Nash equilibria

被引:18
作者
McLennan, A
机构
[1] Department of Economics, University of Minnesota, Minneapolis, MN 55455
关键词
D O I
10.1006/jeth.1996.2213
中图分类号
F [经济];
学科分类号
02 ;
摘要
For finite pure strategy sets S-1,...,S-n if E subset of S = S-1 x ... x S-n is the set of pure strategy Nash equilibria for an open set of payoffs vectors, then #E less than or equal to #S/(max(i) #S-i). There is an open set of payoff vectors for which there are #S/(max(i) #S-i) pure Nash equilibria. (C) 1997 Academic Press.
引用
收藏
页码:408 / 410
页数:3
相关论文
共 5 条
[1]   A BOUND ON THE PROPORTION OF PURE STRATEGY EQUILIBRIA IN GENERIC GAMES [J].
GUL, F ;
PEARCE, D ;
STACCHETTI, E .
MATHEMATICS OF OPERATIONS RESEARCH, 1993, 18 (03) :548-552
[2]   The maximal number of regular totally mixed Nash equilibria [J].
McKelvey, RD ;
McLennan, A .
JOURNAL OF ECONOMIC THEORY, 1997, 72 (02) :411-425
[3]  
QUINT T, 1994, NUMBER NASH EQUILIBR
[4]  
STANFORD W, 1993, POISSON DISTRIBUTION
[5]  
STANFORD W, 1994, UNPUB LIMIT DISTRIBU