Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes

被引:400
作者
Heltweg, B
Gatbonton, T
Schuler, AD
Posakony, J
Li, HZ
Goehle, S
Kollipara, R
DePinho, RA
Gu, YS
Simon, JA
Bedalov, A
机构
[1] Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98109 USA
[2] Fred Hutchinson Canc Res Ctr, Human Biol Div, Seattle, WA 98109 USA
[3] Univ Washington, Dept Med, Seattle, WA 98195 USA
[4] Univ Washington, Dept Radiat Oncol & Immunol, Seattle, WA 98195 USA
[5] Harvard Univ, Sch Med, Dept Med Oncol, Dana Farber Canc Inst,Dept Med, Boston, MA 02115 USA
[6] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
关键词
D O I
10.1158/0008-5472.CAN-05-3617
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
SIRT1 and other NAD-dependent deacetylases have been implicated in control of cellular responses to stress and in tumorigenesis through deacetylation of important regulatory proteins, including p53 and the BCL6 oncoprotein. Hereby, we describe the identification of a compound we named cambinol that inhibits NAD-dependent deacetylase activity of human SIRT1 and SIRT2. Consistent with the role of SIRT1 in promoting cell survival during stress, inhibition of SIRT1 activity with cambinol during genotoxic stress leads to hyperacetylation of key stress response proteins and promotes cell cycle arrest. Treatment of BCL6-expressing Burkitt lymphoma cells with cambinol as a single agent induced apoptosis, which was accompanied by hyperacetylation of BCL6 and p53. Because acetylation inactivates BCL6 and has the opposite effect on the function of p53 and other checkpoint pathways, the antitumor activity of cambinol in Burkitt lymphoma cells may be accomplished through a combined effect of BCL6 inactivation and checkpoint activation. Cambinol was well tolerated in mice and inhibited growth of Burkitt lymphoma xenografts. Inhibitors of NAD-dependent deacetylases may constitute novel anticancer agents.
引用
收藏
页码:4368 / 4377
页数:10
相关论文
共 56 条
[1]   Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration [J].
Araki, T ;
Sasaki, Y ;
Milbrandt, J .
SCIENCE, 2004, 305 (5686) :1010-1013
[2]   Structure of a Sir2 enzyme bound to an acetylated p53 peptide [J].
Avalos, JL ;
Celic, I ;
Muhammad, S ;
Cosgrove, MS ;
Boeke, JD ;
Wolberger, C .
MOLECULAR CELL, 2002, 10 (03) :523-535
[3]   NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae [J].
Bedalov, A ;
Hirao, M ;
Posakony, J ;
Nelson, M ;
Simon, JA .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (19) :7044-7054
[4]   Identification of a small molecule inhibitor of Sir2p [J].
Bedalov, A ;
Gatbonton, T ;
Irvine, WP ;
Gottschling, DE ;
Simon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (26) :15113-15118
[5]  
BERENBAUM MC, 1989, PHARMACOL REV, V41, P93
[6]   Acetylation inactivates the transcriptional repressor BCL6 [J].
Bereshchenko, OR ;
Gu, W ;
Dalla-Favera, R .
NATURE GENETICS, 2002, 32 (04) :606-613
[7]   The Sir2 family of protein deacetylases [J].
Blander, G ;
Guarente, L .
ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 :417-435
[8]   Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase [J].
Brunet, A ;
Sweeney, LB ;
Sturgill, JF ;
Chua, KF ;
Greer, PL ;
Lin, YX ;
Tran, H ;
Ross, SE ;
Mostoslavsky, R ;
Cohen, HY ;
Hu, LS ;
Cheng, HL ;
Jedrychowski, MP ;
Gygi, SP ;
Sinclair, DA ;
Alt, FW ;
Greenberg, ME .
SCIENCE, 2004, 303 (5666) :2011-2015
[9]   Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a [J].
Castrillon, DH ;
Miao, LL ;
Kollipara, R ;
Horner, JW ;
DePinho, RA .
SCIENCE, 2003, 301 (5630) :215-218
[10]   Acetylation control of the retinoblastoma tumour-suppressor protein [J].
Chan, HM ;
Krstic-Demonacos, M ;
Smith, L ;
Demonacos, C ;
La Thangue, NB .
NATURE CELL BIOLOGY, 2001, 3 (07) :667-674