A microbial consortium couples anaerobic methane oxidation to denitrification

被引:1036
作者
Raghoebarsing, AA
Pol, A
van de Pas-Schoonen, KT
Smolders, AJP
Ettwig, KF
Rijpstra, WIC
Schouten, S
Damsté, JSS
Op den Camp, HJM
Jetten, MSM
Strous, M
机构
[1] Univ Nijmegen St Radboud Hosp, Inst Water & Wetland Res, Dept Microbiol, NL-6525 ED Nijmegen, Netherlands
[2] Univ Nijmegen St Radboud Hosp, Inst Water & Wetland Res, Dept Aquat Ecol & Environm Biol, NL-6525 ED Nijmegen, Netherlands
[3] Dept Marine Biogeochem & Toxicol, Royal Netherlands Inst Sea Res NIOZ, NL-1790 AB Den Burg, Netherlands
关键词
D O I
10.1038/nature04617
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modern agriculture has accelerated biological methane and nitrogen cycling on a global scale(1,2). Freshwater sediments often receive increased downward fluxes of nitrate from agricultural runoff and upward fluxes of methane generated by anaerobic decomposition(3). In theory, prokaryotes should be capable of using nitrate to oxidize methane anaerobically, but such organisms have neither been observed in nature nor isolated in the laboratory(4-8). Microbial oxidation of methane is thus believed to proceed only with oxygen or sulphate(9,10). Here we show that the direct, anaerobic oxidation of methane coupled to denitrification of nitrate is possible. A microbial consortium, enriched from anoxic sediments, oxidized methane to carbon dioxide coupled to denitrification in the complete absence of oxygen. This consortium consisted of two microorganisms, a bacterium representing a phylum without any cultured species and an archaeon distantly related to marine methanotrophic Archaea. The detection of relatives of these prokaryotes in different freshwater ecosystems worldwide(11-14) indicates that the reaction presented here may make a substantial contribution to biological methane and nitrogen cycles.
引用
收藏
页码:918 / 921
页数:4
相关论文
共 28 条
[1]  
Bakermans C, 2002, MICROB ECOL, V44, P95, DOI [10.1007/s00248-002-0005-8, 10.1007/s00248-002-3011-y]
[2]   In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat [J].
Blumenberg, M ;
Seifert, R ;
Nauhaus, K ;
Pape, T ;
Michaelis, W .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (08) :4345-4351
[3]   Membrane lipid patterns typify distinct anaerobic methanotrophic consortia [J].
Blumenberg, M ;
Seifert, R ;
Reitner, J ;
Pape, T ;
Michaelis, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (30) :11111-11116
[4]   A marine microbial consortium apparently mediating anaerobic oxidation of methane [J].
Boetius, A ;
Ravenschlag, K ;
Schubert, CJ ;
Rickert, D ;
Widdel, F ;
Gieseke, A ;
Amann, R ;
Jorgensen, BB ;
Witte, U ;
Pfannkuche, O .
NATURE, 2000, 407 (6804) :623-626
[6]   Denitrification with methane as electron donor in oxygen-limited bioreactors [J].
Costa, C ;
Dijkema, C ;
Friedrich, M ;
García-Encina, P ;
Fernández-Polanco, F ;
Stams, AJM .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2000, 53 (06) :754-762
[7]   Denitrification of groundwater with methane as sole hydrogen donor [J].
Eisentraeger, A ;
Klag, P ;
Vansbotter, B ;
Heymann, E ;
Dott, W .
WATER RESEARCH, 2001, 35 (09) :2261-2267
[8]   Assessing methane emissions from global space-borne observations [J].
Frankenberg, C ;
Meirink, JF ;
van Weele, M ;
Platt, U ;
Wagner, T .
SCIENCE, 2005, 308 (5724) :1010-1014
[9]   Nitrogen cycles:: past, present, and future [J].
Galloway, JN ;
Dentener, FJ ;
Capone, DG ;
Boyer, EW ;
Howarth, RW ;
Seitzinger, SP ;
Asner, GP ;
Cleveland, CC ;
Green, PA ;
Holland, EA ;
Karl, DM ;
Michaels, AF ;
Porter, JH ;
Townsend, AR ;
Vörösmarty, CJ .
BIOGEOCHEMISTRY, 2004, 70 (02) :153-226
[10]   Reverse methanogenesis: Testing the hypothesis with environmental genomics [J].
Hallam, SJ ;
Putnam, N ;
Preston, CM ;
Detter, JC ;
Rokhsar, D ;
Richardson, PM ;
DeLong, EF .
SCIENCE, 2004, 305 (5689) :1457-1462