Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

被引:131
作者
de Vrije, Truus [1 ]
Bakker, Robert R. [1 ]
Budde, Miriam A. W. [1 ]
Lai, Man H. [1 ]
Mars, Astrid E. [1 ]
Claassen, Pieternel A. M. [1 ]
机构
[1] Univ Wageningen & Res Ctr, Agrotechnol & Food Sci Grp, NL-6700 AA Wageningen, Netherlands
来源
BIOTECHNOLOGY FOR BIOFUELS | 2009年 / 2卷
关键词
BIOHYDROGEN PRODUCTION; DARK FERMENTATION; CORN STOVER; SP-NOV; BIOMASS; PRETREATMENT; DEGRADATION; WASTES; XYLOSE; MICROORGANISMS;
D O I
10.1186/1754-6834-2-12
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Results: Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75 degrees C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l(-1) in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H-2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l(-1), sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained. Conclusion: Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.
引用
收藏
页数:15
相关论文
共 38 条
[1]   NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae [J].
Almeida, Joao R. M. ;
Roder, Anja ;
Modig, Tobias ;
Laadan, Boaz ;
Liden, Gunnar ;
Gorwa-Grauslund, Marie-F. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 78 (06) :939-945
[2]   Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF) [J].
Almeida, Joao R. M. ;
Modig, Tobias ;
Roder, Anja ;
Liden, Gunnar ;
Gorwa-Grauslund, Marie-F .
BIOTECHNOLOGY FOR BIOFUELS, 2008, 1 (1)
[3]  
[Anonymous], 2003, BIOMETHANE BIOHYDROG, DOI DOI 10.1073/pnas.1016026108
[4]   Extremely thermophilic microorganisms for biomass conversion: status and prospects [J].
Blumer-Schuette, Sara E. ;
Kataeva, Irina ;
Westpheling, Janet ;
Adams, Michael W. W. ;
Kelly, Robert M. .
CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (03) :210-217
[5]   BIOTRANSFORMATION OF FURFURAL AND 5-HYDROXYMETHYL FURFURAL BY ENTERIC BACTERIA [J].
BOOPATHY, R ;
BOKANG, H ;
DANIELS, L .
JOURNAL OF INDUSTRIAL MICROBIOLOGY, 1993, 11 (03) :147-150
[6]   Non-thermal production of pure hydrogen from biomass: HYVOLUTION [J].
Claassen, Pietemel A. M. ;
de Vrije, T. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (11) :1416-1423
[7]   Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process [J].
Datar, Rohit ;
Huang, Jie ;
Maness, Pin-Ching ;
Mohagheghi, Ali ;
Czemik, Stefan ;
Chornet, Esteban .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (08) :932-939
[8]   Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus [J].
de Vrije, T. ;
Mars, A. E. ;
Budde, M. A. W. ;
Lai, M. H. ;
Dijkema, C. ;
de Waard, P. ;
Claassen, P. A. M. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 74 (06) :1358-1367
[9]   Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii [J].
de Vrije, T ;
de Haas, GG ;
Tan, GB ;
Keijsers, ERP ;
Claassen, PAM .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (11-12) :1381-1390
[10]   THE DEGRADATION OF LIGNOCELLULOSICS BY EXTREMELY THERMOPHILIC MICROORGANISMS [J].
DONNISON, AM ;
BROCKELSBY, CM ;
MORGAN, HW ;
DANIEL, RM .
BIOTECHNOLOGY AND BIOENGINEERING, 1989, 33 (11) :1495-1499