Performance Comparison Between p-i-n Tunneling Transistors and Conventional MOSFETs

被引:359
作者
Koswatta, Siyuranga O. [1 ]
Lundstrom, Mark S. [1 ]
Nikonov, Dmitri E. [2 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47906 USA
[2] Intel Corp, Technol & Mfg Grp, Santa Clara, CA 95052 USA
基金
美国国家科学基金会;
关键词
Band-to-band tunneling (BTBT); carbon nanotube (CNT); MOSFET; phonon scattering; subthreshold swing; tunneling field-effect transistor (TFET); CARBON NANOTUBE FETS; FIELD-EFFECT TRANSISTORS; QUANTUM CAPACITANCE; PHONON; BENCHMARKING; LIMITS;
D O I
10.1109/TED.2008.2011934
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a detailed performance comparison between conventional n-i-n MOSFET transistors and tunneling field-effect transistors (TFETs) based on the p-i-n geometry, using semiconducting carbon nanotubes as the model channel material. Quantum-transport simulations are performed using the nonequilibrium Green's function formalism considering realistic phonon-scattering and band-to-band tunneling mechanisms. Simulations show that TFETs have a smaller quantum capacitance at most gate biases. Despite lower on-current, they can switch faster in a range of on/off-current ratios. Switching energy for TFETs is observed to be fundamentally smaller than that for MOSFETs, leading to lower dynamic power dissipation. Furthermore, the beneficial features of TFETs are retained with different bandgap materials. These reasons suggest that the p-i-n TFET is well suited for low-power applications.
引用
收藏
页码:456 / 465
页数:10
相关论文
共 50 条
[21]   High performance n-type carbon nanotube field-effect transistors with chemically doped contacts [J].
Javey, A ;
Tu, R ;
Farmer, DB ;
Guo, J ;
Gordon, RG ;
Dai, HJ .
NANO LETTERS, 2005, 5 (02) :345-348
[22]   Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays [J].
Javey, A ;
Guo, J ;
Farmer, DB ;
Wang, Q ;
Yenilmez, E ;
Gordon, RG ;
Lundstrom, M ;
Dai, HJ .
NANO LETTERS, 2004, 4 (07) :1319-1322
[23]   Ballistic carbon nanotube field-effect transistors [J].
Javey, A ;
Guo, J ;
Wang, Q ;
Lundstrom, M ;
Dai, HJ .
NATURE, 2003, 424 (6949) :654-657
[24]   Quantum capacitance in nanoscale device modeling [J].
John, DL ;
Castro, LC ;
Pulfrey, DL .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (09) :5180-5184
[25]   Field-induced interband tunneling effect transistor (FITET) with negative-differential transconductance and negative-differential conductance [J].
Kim, KR ;
Kim, HH ;
Song, KW ;
Huh, JI ;
Lee, JD ;
Park, BG .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (03) :317-321
[26]   Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices [J].
Knoch, J. ;
Mantl, S. ;
Appenzeller, J. .
SOLID-STATE ELECTRONICS, 2007, 51 (04) :572-578
[27]   Negative differential conductance at room temperature in three-terminal silicon surface junction tunneling device [J].
Koga, J ;
Toriumi, A .
APPLIED PHYSICS LETTERS, 1997, 70 (16) :2138-2140
[28]   Influence of phonon scattering on the performance of p-i-n band-to-band tunneling transistors [J].
Koswatta, Siyuranga O. ;
Lundstrom, Mark S. ;
Nikonov, Dmitri E. .
APPLIED PHYSICS LETTERS, 2008, 92 (04)
[29]   Nonequilibrium green's function treatment of phonon scattering in carbon-nanotube transistors [J].
Koswatta, Siyuranga O. ;
Hasan, Sayed ;
Lundstrom, Mark S. ;
Anantram, M. P. ;
Nikonov, Dmitri E. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) :2339-2351
[30]   Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon-assisted tunneling [J].
Koswatta, Siyuranga O. ;
Lundstrom, Mark S. ;
Nikonov, Dmitri E. .
NANO LETTERS, 2007, 7 (05) :1160-1164