Weak univalence and connectedness of inverse images of continuous functions

被引:35
作者
Gowda, MS [1 ]
Sznajder, R
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Bowie State Univ, Dept Math, Bowie, MD 20715 USA
关键词
weak univalence; connectedness; complementarity problem;
D O I
10.1287/moor.24.1.255
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A continuous function f with domain X and range f(X) in R-n is weakly univalent if there is a sequence of continuous one-to-one functions on X converging tof uniformly on bounded subsets of X. In this article, we establish, under certain conditions, the connectedness of an inverse image f(-1)(q). The univalence results of Radulescu-Radulescu, More-Rheinboldt, and Gale-Nikaido follow from our main result. We also show that the solution set of a nonlinear complementarity problem corresponding to a continuous P-0-function is connected if it contains a nonempty bounded clopen set; in particular, the problem will have a unique solution if it has a locally unique solution.
引用
收藏
页码:255 / 261
页数:7
相关论文
共 21 条
[1]  
Aubin Jean-Pierre, 2009, Set-valued analysis
[2]   P-c-matrices and the linear complementarity problem [J].
Cao, ML ;
Ferris, MC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 246 :299-312
[3]  
Cottle RW., 1992, LINEAR COMPLEMENTARI
[4]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[5]  
Dugundji J., 1970, TOPOLOGY
[6]  
FACCHINEI F, 1997, STRUCTURAL STABILITY
[7]  
Ferris M.C., 1997, COMPLEMENTARITY VARI
[8]  
Gale D., 1965, MATH ANN, V159, P81
[9]  
HUREWICZ H, 1948, DIMENSION THEORY
[10]  
Isac G., 1992, LECT NOTES MATH, V1528