Negative-coupling resonances in pump-coupled lasers

被引:19
作者
Carr, TW [1 ]
Taylor, ML
Schwartz, IB
机构
[1] So Methodist Univ, Dept Math, Dallas, TX 75275 USA
[2] USN, Res Lab, Div Plasma Phys, Nonlinear Dynam Syst Sect,Code 6792, Washington, DC 20375 USA
关键词
coupled lasers; Hopf bifurcation; resonance; modulation;
D O I
10.1016/j.physd.2005.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider coupled lasers, where the intensity deviations from the steady state modulate the pump of the other lasers. Most of our results are for two lasers where the coupling constants are of opposite sign. This leads to a Hopf bifurcation to periodic output for weak coupling. As the magnitude of the coupling constants is increased (negatively) we observe novel amplitude effects such as a weak coupling resonance peak and strong coupling subharmonic resonances and chaos. In the weak coupling regime the output is predicted by a set of slow evolution amplitude equations. Pulsating solutions in the strong coupling limit are described by a discrete map derived from the original model. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:152 / 163
页数:12
相关论文
共 22 条
[1]  
ABRAHAM NB, 1988, PROG OPTICS, V25, P3
[2]   DETERMINISTIC CHAOS IN LASER WITH INJECTED SIGNAL [J].
ARECCHI, FT ;
LIPPI, GL ;
PUCCIONI, GP ;
TREDICCE, JR .
OPTICS COMMUNICATIONS, 1984, 51 (05) :308-314
[3]   AMPLITUDE RESPONSE OF COUPLED OSCILLATORS [J].
ARONSON, DG ;
ERMENTROUT, GB ;
KOPELL, N .
PHYSICA D, 1990, 41 (03) :403-449
[4]   SINGULAR HOPF-BIFURCATION TO RELAXATION OSCILLATIONS .2. [J].
BAER, SM ;
ERNEUX, T .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (06) :1651-1664
[5]   SINGULAR HOPF-BIFURCATION TO RELAXATION OSCILLATIONS [J].
BAER, SM ;
ERNEUX, T .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (05) :721-739
[6]   Bi-instability and the global role of unstable resonant orbits in a driven laser [J].
Carr, TW ;
Billings, L ;
Schwartz, IB ;
Triandaf, I .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 147 (1-2) :59-82
[7]  
DOEDEL EJ, 2001, AUTO 2000 CONTINUATI
[8]   SUBHARMONIC BIFURCATION AND BISTABILITY OF PERIODIC-SOLUTIONS IN A PERIODICALLY MODULATED LASER [J].
ERNEUX, T ;
BAER, SM ;
MANDEL, P .
PHYSICAL REVIEW A, 1987, 35 (03) :1165-1171
[9]   MINIMAL EQUATIONS FOR ANTIPHASE DYNAMICS IN MULTIMODE LASERS [J].
ERNEUX, T ;
MANDEL, P .
PHYSICAL REVIEW A, 1995, 52 (05) :4137-4144
[10]   COHERENCE AND PHASE DYNAMICS OF SPATIALLY COUPLED SOLID-STATE LASERS [J].
FABINY, L ;
COLET, P ;
ROY, R ;
LENSTRA, D .
PHYSICAL REVIEW A, 1993, 47 (05) :4287-4296