Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors in the presence of noise

被引:20
作者
Anishchenko, VS [1 ]
Vadivasova, TE
Kopeikin, AS
Kurths, J
Strelkova, GI
机构
[1] Saratov NG Chernyshevskii State Univ, Lab Nonlinear Dynam, Dept Phys, Saratov 410026, Russia
[2] Univ Potsdam, Inst Phys, Grp Nonlinear Dynam, D-14415 Potsdam, Germany
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 03期
关键词
D O I
10.1103/PhysRevE.65.036206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the relaxation to an invariant probability measure on quasihyperbolic and nonhyperbolic chaotic attractors in the presence of noise. We also compare different characteristics of the rate of mixing and show numerically that the rate of mixing for nonhyperbolic chaotic attractors can significantly change under the influence of noise. A mechanism of the noise influence on mixing is presented, which is associated with the dynamics of the instantaneous phase of chaotic trajectories. We also analyze how the synchronization effect can influence the rate of mixing in a system of two coupled chaotic oscillators.
引用
收藏
页码:1 / 036206
页数:10
相关论文
共 54 条
[41]  
RUELLE D, 1983, CR ACAD SCI I-MATH, V296, P191
[42]  
Ruelle D., 1978, BOL SOC BRAS MAT, V9, P83, DOI DOI 10.1007/BF02584795
[43]   How long do numerical chaotic solutions remain valid? [J].
Sauer, T ;
Grebogi, C ;
Yorke, JA .
PHYSICAL REVIEW LETTERS, 1997, 79 (01) :59-62
[44]   Effect of noise on nonhyperbolic chaotic attractors [J].
Schroer, CG ;
Ott, E ;
Yorke, JA .
PHYSICAL REVIEW LETTERS, 1998, 81 (07) :1397-1400
[45]  
Shil'nikov L. P., 1993, Journal of Circuits, Systems and Computers, V3, P1, DOI 10.1142/S0218126693000022
[46]  
Shilnikov A., 1989, METHODS QUALITATIVE, P130
[47]   Mathematical problems of nonlinear dynamics: A tutorial [J].
Shilnikov, L .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (09) :1953-2001
[48]  
SINAI I, 1959, DOKL AKAD NAUK SSSR+, V124, P768
[49]  
Sinai Ya. G., 1970, USP MAT NAUK, V25, P141