Non-minimal couplings, quantum geometry and black-hole entropy

被引:40
作者
Ashtekar, A [1 ]
Corichi, A
机构
[1] Penn State Univ, Ctr Gravitat Phys, University Pk, PA 16802 USA
[2] Penn State Univ, Geometry Phys Dept, University Pk, PA 16802 USA
[3] Erwin Schrodinger Inst, A-1090 Vienna, Austria
[4] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
关键词
D O I
10.1088/0264-9381/20/20/310
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The black-hole entropy calculation for type I isolated horizons, based on loop quantum gravity, is extended to include non-minimally coupled scalar fields. Although the non-minimal coupling significantly modifies quantum geometry, the highly non-trivial consistency checks for the emergence of a coherent description of the quantum horizon continue to be met. The resulting expression of black-hole entropy now depends also on the scalar field precisely in the fashion predicted by the first law in the classical theory (with the same value of the Barbero-Immirzi parameter as in the case of minimal coupling).
引用
收藏
页码:4473 / 4484
页数:12
相关论文
共 33 条
[11]   PROJECTIVE TECHNIQUES AND FUNCTIONAL-INTEGRATION FOR GAUGE-THEORIES [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (05) :2170-2191
[12]   Mechanics of rotating isolated horizons [J].
Ashtekar, A ;
Beetle, C ;
Lewandowski, J .
PHYSICAL REVIEW D, 2001, 64 (04)
[13]   Quantum geometry and black hole entropy [J].
Ashtekar, A ;
Baez, J ;
Corichi, A ;
Krasnov, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :904-907
[14]   Isolated horizons: Hamiltonian evolution and the first law [J].
Ashtekar, A ;
Fairhurst, S ;
Krishnan, B .
PHYSICAL REVIEW D, 2000, 62 (10)
[15]  
Ashtekar A., 2000, ADV THEOR MATH PHYS, V3, P419, DOI DOI 10.4310/atmp.1999.v3.n3.a1
[16]  
Ashtekar A., 1998, Adv. Theor. Math. Phys, V1, P388, DOI DOI 10.4310/ATMP.1997.V1.N2.A8
[17]  
Ashtekar A., 1994, Knots and Quantum Gravity
[18]  
Ashtekar A, 2000, ADV THEOR MATH PHYS, V4
[19]   GENERALIZED MEASURES IN GAUGE-THEORY [J].
BAEZ, JC .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 31 (03) :213-223
[20]  
BAEZ JC, 1996, INTERFACE KNOTS PHYS, P167