Non-minimal couplings, quantum geometry and black-hole entropy

被引:40
作者
Ashtekar, A [1 ]
Corichi, A
机构
[1] Penn State Univ, Ctr Gravitat Phys, University Pk, PA 16802 USA
[2] Penn State Univ, Geometry Phys Dept, University Pk, PA 16802 USA
[3] Erwin Schrodinger Inst, A-1090 Vienna, Austria
[4] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
关键词
D O I
10.1088/0264-9381/20/20/310
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The black-hole entropy calculation for type I isolated horizons, based on loop quantum gravity, is extended to include non-minimally coupled scalar fields. Although the non-minimal coupling significantly modifies quantum geometry, the highly non-trivial consistency checks for the emergence of a coherent description of the quantum horizon continue to be met. The resulting expression of black-hole entropy now depends also on the scalar field precisely in the fashion predicted by the first law in the classical theory (with the same value of the Barbero-Immirzi parameter as in the case of minimal coupling).
引用
收藏
页码:4473 / 4484
页数:12
相关论文
共 33 条
[21]   ON THE GLOBAL STRUCTURE OF ROBINSON-TRAUTMAN SPACE-TIMES [J].
CHRUSCIEL, PT .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 436 (1897) :299-316
[22]   Quasinormal modes, the area spectrum, and black hole entropy [J].
Dreyer, O .
PHYSICAL REVIEW LETTERS, 2003, 90 (08) :4-081301
[23]   Yang-Mills analogues of the Immirzi ambiguity -: art. no. 047505 [J].
Gambini, R ;
Obregón, O ;
Pullin, J .
PHYSICAL REVIEW D, 1999, 59 (04)
[24]   SOME PROPERTIES OF THE NOETHER CHARGE AND A PROPOSAL FOR DYNAMICAL BLACK-HOLE ENTROPY [J].
IYER, V ;
WALD, RM .
PHYSICAL REVIEW D, 1994, 50 (02) :846-864
[25]   ON BLACK-HOLE ENTROPY [J].
JACOBSON, T ;
KANG, GW .
PHYSICAL REVIEW D, 1994, 49 (12) :6587-6598
[26]   ON THE SUPPORT OF THE ASHTEKAR-LEWANDOWSKI MEASURE [J].
MAROLF, D ;
MOURAO, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (03) :583-605
[27]  
PEREZ A, 2003, COMMUNICATION 0416
[28]   Immirzi parameter in quantum general relativity [J].
Rovelli, C ;
Thiemann, T .
PHYSICAL REVIEW D, 1998, 57 (02) :1009-1014
[29]   SPIN NETWORKS AND QUANTUM-GRAVITY [J].
ROVELLI, C ;
SMOLIN, L .
PHYSICAL REVIEW D, 1995, 52 (10) :5743-5759
[30]   DISCRETENESS OF AREA AND VOLUME IN QUANTUM-GRAVITY [J].
ROVELLI, C ;
SMOLIN, L .
NUCLEAR PHYSICS B, 1995, 442 (03) :593-619