Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution

被引:643
作者
Chen, Shiyou [1 ,2 ]
Wang, Lin-Wang [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth JCAP, Berkeley, CA 94720 USA
[2] E China Normal Univ, Key Lab Polar Mat & Devices MOE, Shanghai 200241, Peoples R China
关键词
photoelectrode semiconductor; photocorrosion; stability; reduction potential; oxidation potential; HYDROGEN GENERATION; VISIBLE-LIGHT; SOLAR-ENERGY; WATER; STABILITY; PHOTOCORROSION; ELECTROLYTES; PHOTOCATHODE; PHOTOANODES; ELECTRODES;
D O I
10.1021/cm302533s
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An approach is introduced to calculate the thermodynamic oxidation and reduction potentials of semiconductors in aqueous solution. By combining a newly developed ab initio calculation method for compound formation energy and band alignment with electrochemistry experimental data, this approach can be used to predict the stability of almost any compound semiconductor in aqueous solution. Thirty photocatalytic semiconductors have been studied, and a graph (a simplified Pourbaix diagram) showing their valence/conduction band edges and oxidation/reduction potentials relative to the water redox potentials is produced. On the basis of this graph, the thermodynamic stabilities and trends against the oxidative and reductive photocorrosion for compound semiconductors are analyzed, which shows the following: (i) some metal oxides can be resistant against the oxidation by the photogenerated holes when used as the n-type photoanodes; (ii) all the nonoxide semiconductors are susceptible to oxidation, but they are resistant to the reduction by the photogenerated electrons and thus can be used as the p-type photocathodes if protected from the oxidation; (iii) doping or alloying the metal oxide with less electronegative anions can decrease the band gap but also degrade the stability against oxidation.
引用
收藏
页码:3659 / 3666
页数:8
相关论文
共 41 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]   Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects [J].
Bak, T ;
Nowotny, J ;
Rekas, M ;
Sorrell, CC .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (10) :991-1022
[3]   Thermodynamic Potential for the Anodic Dissolution of n-Type Semiconductors [J].
Bard, Allen J. ;
Wrighton, Mark S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (11) :1706-1710
[4]  
CAMPET G, 1989, J ELECTROANAL CHEM, V269, P435, DOI 10.1155/1989/78914
[5]   Intrinsic defects and electronic conductivity of TaON: First-principles insights [J].
Chen, Shiyou ;
Wang, Lin-Wang .
APPLIED PHYSICS LETTERS, 2011, 99 (22)
[6]   Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells [J].
Chen, Shiyou ;
Walsh, Aron ;
Yang, Ji-Hui ;
Gong, X. G. ;
Sun, Lin ;
Yang, Ping-Xiong ;
Chu, Jun-Hao ;
Wei, Su-Huai .
PHYSICAL REVIEW B, 2011, 83 (12)
[7]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[8]  
Chen YW, 2011, NAT MATER, V10, P539, DOI [10.1038/NMAT3047, 10.1038/nmat3047]
[9]   Aligning electronic energy levels at the TiO2/H2O interface [J].
Cheng, Jun ;
Sprik, Michiel .
PHYSICAL REVIEW B, 2010, 82 (08)
[10]   Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods [J].
Chun, WJ ;
Ishikawa, A ;
Fujisawa, H ;
Takata, T ;
Kondo, JN ;
Hara, M ;
Kawai, M ;
Matsumoto, Y ;
Domen, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (08) :1798-1803