Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips

被引:183
作者
Kosuri, Sriram [1 ,2 ]
Eroshenko, Nikolai [1 ,3 ]
LeProust, Emily M. [4 ]
Super, Michael [1 ]
Way, Jeffrey [1 ]
Li, Jin Billy [2 ]
Church, George M. [1 ,2 ]
机构
[1] Wyss Inst Biol Inspired Engn, Boston, MA USA
[2] Harvard Univ, Sch Med, Dept Genet, Boston, MA USA
[3] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Agilent Technol, Santa Clara, CA USA
关键词
GENOME; OLIGONUCLEOTIDES; DESIGN;
D O I
10.1038/nbt.1716
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology(1). Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis(2). Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude(3-5), yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of similar to 35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding similar to 2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.
引用
收藏
页码:1295 / U108
页数:7
相关论文
共 26 条
[1]   Gene synthesis by circular assembly amplification [J].
Bang, Duhee ;
Church, George M. .
NATURE METHODS, 2008, 5 (01) :37-39
[2]   Protein-mediated error correction for de novo DNA synthesis -: art. no. e162 [J].
Carr, PA ;
Park, JS ;
Lee, YJ ;
Yu, T ;
Zhang, SG ;
Jacobson, JM .
NUCLEIC ACIDS RESEARCH, 2004, 32 (20) :e162
[3]   Genome engineering [J].
Carr, Peter A. ;
Church, George M. .
NATURE BIOTECHNOLOGY, 2009, 27 (12) :1151-1162
[4]   FACS-optimized mutants of the green fluorescent protein (GFP) [J].
Cormack, BP ;
Valdivia, RH ;
Falkow, S .
GENE, 1996, 173 (01) :33-38
[5]   Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome [J].
Gibson, Daniel G. ;
Glass, John I. ;
Lartigue, Carole ;
Noskov, Vladimir N. ;
Chuang, Ray-Yuan ;
Algire, Mikkel A. ;
Benders, Gwynedd A. ;
Montague, Michael G. ;
Ma, Li ;
Moodie, Monzia M. ;
Merryman, Chuck ;
Vashee, Sanjay ;
Krishnakumar, Radha ;
Assad-Garcia, Nacyra ;
Andrews-Pfannkoch, Cynthia ;
Denisova, Evgeniya A. ;
Young, Lei ;
Qi, Zhi-Qing ;
Segall-Shapiro, Thomas H. ;
Calvey, Christopher H. ;
Parmar, Prashanth P. ;
Hutchison, Clyde A., III ;
Smith, Hamilton O. ;
Venter, J. Craig .
SCIENCE, 2010, 329 (5987) :52-56
[6]   Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides [J].
Gibson, Daniel G. .
NUCLEIC ACIDS RESEARCH, 2009, 37 (20) :6984-6990
[7]  
Huston J S, 1993, Int Rev Immunol, V10, P195, DOI 10.3109/08830189309061696
[8]   Progress in gene assembly from a MAS-driven DNA microarray [J].
Kim, C. ;
Kaysen, J. ;
Richmond, K. ;
Rodesch, M. ;
Binkowski, B. ;
Chu, L. ;
Li, M. ;
Heinrich, K. ;
Blair, S. ;
Belshaw, P. ;
Sussman, M. ;
Cerrina, F. .
MICROELECTRONIC ENGINEERING, 2006, 83 (4-9) :1613-1616
[9]   A microfluidic oligonucleotide synthesizer [J].
Lee, Cheng-Chung ;
Snyder, Thomas M. ;
Quake, Stephen R. .
NUCLEIC ACIDS RESEARCH, 2010, 38 (08) :2514-2521
[10]   Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process [J].
LeProust, Emily M. ;
Peck, Bill J. ;
Spirin, Konstantin ;
McCuen, Heather Brummel ;
Moore, Bridget ;
Namsaraev, Eugeni ;
Caruthers, Marvin H. .
NUCLEIC ACIDS RESEARCH, 2010, 38 (08) :2522-2540