Localized Temperature and Chemical Reaction Control in Nanoscale Space by Nanowire Array

被引:55
作者
Jin, C. Yan [1 ,2 ]
Li, Zhiyong [3 ]
Williams, R. Stanley [4 ]
Lee, K-Cheol [5 ]
Park, Inkyu [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mech Engn, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, KI NanoCentury, Taejon 305701, South Korea
[3] Hewlett Packard HP Lab, Intelligent Infrastruct Lab, Palo Alto, CA 94304 USA
[4] Hewlett Packard HP Lab, NanoElect Res Grp, Palo Alto, CA 94304 USA
[5] KRISS, Div Phys Metrol, Taejon, South Korea
基金
新加坡国家研究基金会;
关键词
Nanowire array; local heating; nanoscale chemical reaction; polymer decomposition; polymer cross-linking; metal oxide nanowire; SILICON NANOWIRES; MEMORY; SENSOR;
D O I
10.1021/nl2026585
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We introduce a novel method for chemical reaction control with nanoscale spatial resolution based on localized heating by using a well-aligned nanowire array. Numerical and experimental analysis shows that each individual nanowire, could be selectively and rapidly Joule heated for local and ultrafast temperature modulation in nanoscale space (e.g., maximum temperature gradient 2.2 K/nm at the nanowire edge; heating/cooling time < 2 mu s). By taking advantage of this capability, several nanoscale chemical reactions such as polymer decomposition/cross-linking and direct and localized hydrothermal synthesis of metal oxide nanowires were demonstrated.
引用
收藏
页码:4818 / 4825
页数:8
相关论文
共 26 条
[1]   Broadband ZnO single-nanowire light-emitting diode [J].
Bao, Jiming ;
Zimmler, Mariano A. ;
Capasso, Federico ;
Wang, Xiaowei ;
Ren, Z. F. .
NANO LETTERS, 2006, 6 (08) :1719-1722
[2]   Post-processing techniques for locally self-assembled silicon nanowires [J].
Englander, Ongi ;
Christensen, Dane ;
Kim, Jongbaeg ;
Lin, Liwei .
SENSORS AND ACTUATORS A-PHYSICAL, 2007, 135 (01) :10-15
[3]  
Freer EM, 2010, NAT NANOTECHNOL, V5, P525, DOI [10.1038/nnano.2010.106, 10.1038/NNANO.2010.106]
[4]   Towards single cell heat shock response by accurate control on thermal confinement with an on-chip microwire electrode [J].
Ginet, Patrick ;
Montagne, Kevin ;
Akiyama, Sho ;
Rajabpour, Ali ;
Taniguchi, Akiyoshi ;
Fujii, Teruo ;
Sakai, Yasuyuki ;
Kim, Beomjoon ;
Fourmy, Dominique ;
Volz, Sebastian .
LAB ON A CHIP, 2011, 11 (08) :1513-1520
[5]   Ultra-high-density phase-change storage and memory [J].
Hamann, HF ;
O'Boyle, M ;
Martin, YC ;
Rooks, M ;
Wickramasinghe, K .
NATURE MATERIALS, 2006, 5 (05) :383-387
[6]   Selective formation of GaN-based nanorod heterostructures on soda-lime glass substrates by a local heating method [J].
Hong, Young Joon ;
Kim, Yong-Jin ;
Jeon, Jong-Myeong ;
Kim, Miyoung ;
Choi, Jun Hee ;
Baik, Chan Wook ;
Kim, Sun Il ;
Park, Sung Soo ;
Kim, Jong Min ;
Yi, Gyu-Chul .
NANOTECHNOLOGY, 2011, 22 (20)
[7]   Programmed adsorption and release of proteins in a microfluidic device [J].
Huber, DL ;
Manginell, RP ;
Samara, MA ;
Kim, BI ;
Bunker, BC .
SCIENCE, 2003, 301 (5631) :352-354
[8]   Thermal lithography for 100-nm dimensions using a nano-heat spot of a visible laser beam [J].
Kuwahara, M ;
Li, JM ;
Mihalcea, C ;
Atoda, N ;
Tominaga, J ;
Shi, LP .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2002, 41 (9A-B) :L1022-L1024
[9]   Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles [J].
Lapotko, Dmitri O. ;
Lukianova, Ekaterina ;
Oraevsky, Alexander A. .
LASERS IN SURGERY AND MEDICINE, 2006, 38 (06) :631-642
[10]   Highly scalable non-volatile and ultra-lowpower phase-change nanowire memory [J].
Lee, Se-Ho ;
Jung, Yeonwoong ;
Agarwal, Ritesh .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :626-630