Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG

被引:74
作者
Astolfi, L
Cincotti, F
Mattia, D
Salinari, S
Babiloni, C
Basilisco, A
Rossini, PM
Ding, L
Ni, Y
He, B
Marciani, MG
Babiloni, F
机构
[1] Univ Roma La Sapienza, Dipartimento Informat & Sistemist, I-00185 Rome, Italy
[2] Fdn Santa Lucia, Ist Ricovero & Cura Carattere Sci, I-00100 Rome, Italy
[3] Univ Roma La Sapienza, Dipartimento Fisiol Umana & Farmacol, I-00185 Rome, Italy
[4] Osped Fatebenefratelli Isola Tiberina, Assoc Fatebenefratelli Ric, I-00100 Rome, Italy
[5] Osped Fatebenefratelli San Giovanni Dio, Ist Ric & Cura Carattere Sci, I-25100 Brescia, Italy
[6] Cattedra Neurol, I-00100 Rome, Italy
[7] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA
[8] Univ Minnesota, Dept Biomed Engn, Minneapolis, MN 55455 USA
[9] Univ Roma Tor Vergata, Dipartimento Neurosci, I-00100 Rome, Italy
关键词
structural equation modeling; high-resolution EEG; directed transfer function;
D O I
10.1016/j.mri.2004.10.006
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Different brain imaging devices are presently available to provide images of the human functional cortical activity, based on hemodynamic, metabolic or electromagnetic measurements. However, static images of brain regions activated during particular tasks do not convey the information of how these regions are interconnected. The concept of brain connectivity plays a central role in the neuroscience, and different definitions of connectivity, functional and effective, have been adopted in literature. While the functional connectivity is defined as the temporal coherence among the activities of different brain areas, the effective connectivity is defined as the simplest brain circuit that would produce the same temporal relationship as observed experimentally among cortical sites. The structural equation modeling (SEM) is the most used method to estimate effective connectivity in neuroscience, and its typical application is on data related to brain hemodynarnic behavior tested by functional magnetic resonance imaging (fMRI), whereas the directed transfer function (DTF) method is a frequency-domain approach based on both a multivariate autoregressive (MVAR) modeling of time series and on the concept of Granger causality. This study presents advanced methods for the estimation of cortical connectivity by applying SEM and DTF on the cortical signals estimated from high-resolution electroencephalography (EEG) recordings, since these signals exhibit a higher spatial resolution than conventional cerebral electromagnetic measures. To estimate correctly the cortical signals, we used a subject's multicompartment head model (scalp, skull, dura mater, cortex) constructed from individual MRI, a distributed source model and a regularized linear inverse source estimates of cortical current density. Before the application of SEM and DTF methodology to the cortical waveforms estimated from high-esolution EEG data, we performed a simulation study, in which different main factors (signal-to-noise ratio, SNR, and simulated cortical activity duration, LENGTH) were systematically manipulated in the generation of test signals, and the errors in the estimated connectivity were evaluated by the analysis of variance (ANOVA). The statistical analysis returned that during simulations, both SEM and DTF estimators were able to correctly estimate the imposed connectivity pattems under reasonable operative conditions, that is, when data exhibit an SNR of at least 3 and a LENGTH of at least 75 s of nonconsecutive EEG recordings at 64 Hz of sampling rate. Hence, effective and functional connectivity patterns of cortical activity can be effectively estimated under general conditions met in any practical EEG recordings, by combining high-resolution EEG techniques and linear inverse estimation with SEM or DTF methods. We conclude that the estimation of cortical connectivity can be perfomed not only with hemodynamic measurements, but also with EEG signals treated with advanced computational techniques. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1457 / 1470
页数:14
相关论文
共 58 条
[11]   COHERENCE AND TIME-DELAY ESTIMATION [J].
CARTER, GC .
PROCEEDINGS OF THE IEEE, 1987, 75 (02) :236-255
[12]   Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain [J].
Classen, J ;
Gerloff, C ;
Honda, M ;
Hallett, M .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (03) :1567-1573
[13]   Neuroimaging of cognitive functions in human parietal cortex [J].
Culham, JC ;
Kanwisher, NG .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (02) :157-163
[14]   Evaluation of different measures of functional connectivity using a neural mass model [J].
David, O ;
Cosmelli, D ;
Friston, KJ .
NEUROIMAGE, 2004, 21 (02) :659-673
[15]  
Friston Karl J., 1994, Human Brain Mapping, V2, P56, DOI 10.1002/hbm.460020107
[16]   Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements [J].
Gerloff, C ;
Richard, J ;
Hadley, J ;
Schulman, AE ;
Honda, M ;
Hallett, M .
BRAIN, 1998, 121 :1513-1531
[17]   EVENT-RELATED COVARIANCES DURING A BIMANUAL VISUOMOTOR TASK .2. PREPARATION AND FEEDBACK [J].
GEVINS, AS ;
CUTILLO, BA ;
BRESSLER, SL ;
MORGAN, NH ;
WHITE, RM ;
ILLES, J ;
GREER, DS .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1989, 74 (02) :147-160
[18]   INVESTIGATING CAUSAL RELATIONS BY ECONOMETRIC MODELS AND CROSS-SPECTRAL METHODS [J].
GRANGER, CWJ .
ECONOMETRICA, 1969, 37 (03) :424-438
[19]   Properties of MEG tomographic maps obtained with spatial filtering [J].
Gross, J ;
Timmermann, L ;
Kujala, J ;
Salmelin, R ;
Schnitzler, A .
NEUROIMAGE, 2003, 19 (04) :1329-1336
[20]   Dynamic imaging of coherent sources:: Studying neural interactions in the human brain [J].
Gross, J ;
Kujala, J ;
Hämäläinen, M ;
Timmermann, L ;
Schnitzler, A ;
Salmelin, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (02) :694-699