Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying

被引:164
作者
Desai, KGH
Park, HJ
机构
[1] Korea Univ, Grad Sch Biotechnol, Seoul 136701, South Korea
[2] Clemson Univ, Clemson, SC USA
关键词
vitamin C; chitosan; microspheres; TPP; spray drying; controlled release; cross-linked microspheres;
D O I
10.1080/02652040400026533
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This paper describes vitamin C-encapsulated chitosan microspheres cross-linked with tripolyphosphate (TPP) using a new process prepared by spray drying intended for oral delivery of vitamin C. Thus, prepared microspheres were evaluated by loading efficiency, particles size analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared ( FTIR) spectroscopy, X-ray diffraction (XRD), zeta potential and in vitro release studies. The microspheres so prepared had a good sphericity and shape but varied with the volume of cross-linking agent solution added. They were positively charged. The mean particle size ranged from 6.1 - 9.0 mu m. The size, shape, encapsulation efficiency, zeta potential and release rate were influenced by the volume of cross-linking agent. With the increasing amount of cross-linking agent, both the particle size and release rate were increased. Encapsulation efficiency decreased from 45.05 - 58.30% with the increasing amount of TPP solution from 10 - 30 ml. FTIR spectroscopy study showed that the vitamin C was found to be stable after encapsulation. XRD studies revealed that vitamin C is dispersed at the molecular level in the TPP-chitosan matrix. Well-defined change in the surface morphology was observed with the varying volume of TPP. The sphericity of chitosan microspheres was lost at higher volume of cross-linking agent. The release of vitamin C from these microspheres was sustained and affected by the volume of cross-linking agent added. The release of vitamin C from TPP-chitosan microspheres followed Fick's law of diffusion.
引用
收藏
页码:179 / 192
页数:14
相关论文
共 46 条
[21]   A validated 1H NMR method for the determination of the degree of deacetylation of chitosan [J].
Lavertu, M ;
Xia, Z ;
Serreqi, AN ;
Berrada, M ;
Rodrigues, A ;
Wang, D ;
Buschmann, MD ;
Gupta, A .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2003, 32 (06) :1149-1158
[22]   Preparation and release characteristics of polymer-coated and blended alginate microspheres [J].
Lee, DW ;
Hwang, SJ ;
Park, JB ;
Park, HJ .
JOURNAL OF MICROENCAPSULATION, 2003, 20 (02) :179-192
[23]   Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents [J].
Lee, JY ;
Park, HJ ;
Lee, CY ;
Choi, WY .
LEBENSMITTEL-WISSENSCHAFT UND-TECHNOLOGIE-FOOD SCIENCE AND TECHNOLOGY, 2003, 36 (03) :323-329
[24]   Chitosan microspheres prepared by emulsification and ionotropic gelation [J].
Lim, LY ;
Wan, LSC ;
Thai, PY .
DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 1997, 23 (10) :981-985
[25]  
LOGUE T, 1980, AUST NZ J MED, V10, P588
[26]  
Machlin L. J., 2001, HDB VITAMINS, P529
[27]  
Masters K., 1991, SPRAY DRYING HDB
[28]   Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen-adsorbed microsphere and in vitro release [J].
Mi, FL ;
Shyu, SS ;
Chen, CT ;
Schoung, JY .
BIOMATERIALS, 1999, 20 (17) :1603-1612
[29]  
Mi FL, 1999, J APPL POLYM SCI, V74, P1868, DOI 10.1002/(SICI)1097-4628(19991114)74:7<1868::AID-APP32>3.3.CO
[30]  
2-E