Histone deacetylase inhibitors and malignant melanoma

被引:57
作者
Boyle, GM [1 ]
Martyn, AC [1 ]
Parsons, PG [1 ]
机构
[1] Queensland Inst Med Res, Melanoma Genom Grp, Brisbane, Qld 4029, Australia
来源
PIGMENT CELL RESEARCH | 2005年 / 18卷 / 03期
关键词
histone deacetylase inhibitor; melanoma; melanocyte; cell cycle;
D O I
10.1111/j.1600-0749.2005.00228.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The search for antimelanoma agents acting by terminal differentiation via the pigmentation pathway has so far been unsuccessful, in part because of tumor heterogeneity and loss of function of pigmentation genes. Some differentiation agents, however, have emerged as inhibitors of histone deacetylases (HDAC), with consequences for chromosome remodeling, cell cycle arrest and selective toxicity in cultured melanoma cells compared with normal melanocytes. Few effects have been found on pigmentation, except paradoxically the down-regulation of TRP-1. Of the many genes regulated by HDAC inhibitors, induction of p21(WAF1/Cip1) is the most consistent finding and is associated with G(1) or G(2) phase blocks. Some melanoma cell lines appear to lack an HDAC inhibitor-specific G(2) checkpoint and viability is thus compromised by dividing with inappropriately-modified chromatin. Most cultured melanoma cells undergo apoptosis following treatment with HDAC inhibitors, via a mitochondrial and caspase-dependent pathway. However, the molecular mechanism may vary with cell line and HDAC inhibitor class. Tumor selectivity cannot yet be attributed to specific types or levels of HDACs, nor has the possibility of acetylation of non-histone targets been excluded. Elucidation of these complexities may be rewarding, in terms of directing the multiple consequences of inhibiting histone deacetylation towards overcoming the therapeutic problems of melanoma heterogeneity and emergence of resistance. Success in the clinic may require combination with agents that synergize with the cell cycle blocking and pro-apoptotic action of HDAC inhibitors.
引用
收藏
页码:160 / 166
页数:7
相关论文
共 45 条
[1]   p21WAF1 is required for butyrate-mediated growth inhibition of human colon cancer cells [J].
Archer, SY ;
Meng, SF ;
Shei, A ;
Hodin, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (12) :6791-6796
[2]   Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway [J].
Bandyopadhyay, D ;
Mishra, A ;
Medrano, EE .
CANCER RESEARCH, 2004, 64 (21) :7706-7710
[3]  
Bandyopadhyay D, 2002, CANCER RES, V62, P6231
[4]  
BEPPU T, 1986, Patent No. 61176523
[5]   Histone modifications in transcriptional regulation [J].
Berger, SL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (02) :142-148
[6]   The Sir2 family of protein deacetylases [J].
Blander, G ;
Guarente, L .
ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 :417-435
[7]   Histone deacetylase inhibitors specifically kill nonproliferating tumour cells [J].
Burgess, A ;
Ruefli, A ;
Beamish, H ;
Warrener, R ;
Saunders, N ;
Johnstone, R ;
Gabrielli, B .
ONCOGENE, 2004, 23 (40) :6693-6701
[8]  
Burgess AJ, 2001, MOL PHARMACOL, V60, P828
[9]   The diverse functions of histone acetyltransferase complexes [J].
Carrozza, MJ ;
Utley, RT ;
Workman, JL ;
Côté, J .
TRENDS IN GENETICS, 2003, 19 (06) :321-329
[10]  
DRUMMOND DC, 2005, ANN REV PHARM TOXICO, V45, DOI DOI 10.1146/ANNUREV.PHARMATOX.45.120403.095825