Precise simulation of criticality in asymmetric fluids

被引:107
作者
Orkoulas, G [1 ]
Fisher, ME [1 ]
Panagiotopoulos, AZ [1 ]
机构
[1] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevE.63.051507
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Extensive grand canonical Monte Carlo simulations have been performed for the hard-core square-well fluid with interaction range b=1.5 sigma. The critical exponent for the correlation length has been estimated in an unbiased fashion as nu= 0.63+/-0.03 via finite-size extrapolations, of the extrema of properties measured along specially constructed, asymptotically critical loci that represent pseudosymmetry axes. The subsequent location of the critical point achieves a precision of five parts in 10(4) for T-c and about 0.3% for the critical density rho (c). The effective exponents gamma (+)(eff) and beta (eff) indicate Ising-type critical-point values to within 2% and 5.6%, respectively, convincingly distinguishing the universality class from the ''nearby'' XY and n = 0 (self-avoiding walk classes. Simulations of the heat capacity C-V(T,rho) and d(2)p(sigma)/dT(2), where p(sigma) is the vapor pressure below T-c, suggest a negative but small Yang-Yang anomaly, i.e., a specific-heat-like divergence in the corresponding chemical potential derivative (d(2)mu (sigma)/dT(2)) that requires a revision of the standard asymptotic scaling description of asymmetric fluids.
引用
收藏
页码:515071 / 515071
页数:14
相关论文
共 76 条
[11]   FINITE-SIZE EFFECTS AT ASYMMETRIC 1ST-ORDER PHASE-TRANSITIONS [J].
BORGS, C ;
KOTECKY, R .
PHYSICAL REVIEW LETTERS, 1992, 68 (11) :1734-1737
[12]   Classification of phase transitions in small systems [J].
Borrmann, P ;
Mülken, O ;
Harting, J .
PHYSICAL REVIEW LETTERS, 2000, 84 (16) :3511-3514
[13]   Effective Hamiltonian analysis of fluid criticality and application to the square-well fluid [J].
Brillantov, NV ;
Valleau, JP .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (03) :1123-1130
[14]   Thermodynamic scaling Monte Carlo study of the liquid-gas transition in the square-well fluid [J].
Brilliantov, NV ;
Valleau, JP .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (03) :1115-1122
[15]   SCALING FIELDS AND UNIVERSALITY OF THE LIQUID-GAS CRITICAL-POINT [J].
BRUCE, AD ;
WILDING, NB .
PHYSICAL REVIEW LETTERS, 1992, 68 (02) :193-196
[16]   A Monte Carlo finite size scaling study of charged hard-sphere criticality [J].
Caillol, JM ;
Levesque, D ;
Weis, JJ .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (05) :1565-1575
[17]   Critical behavior of the restricted primitive model [J].
Caillol, JM ;
Levesque, D ;
Weis, JJ .
PHYSICAL REVIEW LETTERS, 1996, 77 (19) :4039-4042
[18]   STATIC CRITICAL-BEHAVIOR OF 3-DIMENSIONAL CLASSICAL HEISENBERG MODELS - A HIGH-RESOLUTION MONTE-CARLO STUDY [J].
CHEN, K ;
FERRENBERG, AM ;
LANDAU, DP .
PHYSICAL REVIEW B, 1993, 48 (05) :3249-3256
[19]   MONTE-CARLO STUDY OF CRITICAL-BEHAVIOR IN THE 3-DIMENSIONAL CLASSICAL HEISENBERG-FERROMAGNET [J].
CHEN, K ;
FERRENBERG, AM ;
LANDAU, DP .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (10) :5488-5490
[20]   Individual fragment yields and determination of the critical exponent sigma [J].
Elliott, JB ;
Albergo, S ;
Bieser, F ;
Brady, FP ;
Caccia, Z ;
Cebra, DA ;
Chacon, AD ;
Chance, JL ;
Choi, Y ;
Costa, S ;
Gilkes, ML ;
Hauger, JA ;
Hirsch, AS ;
Hjort, EL ;
Insolia, A ;
Justice, M ;
Keane, D ;
Kintner, JC ;
Lindenstruth, V ;
Lisa, MA ;
Lynen, U ;
Matis, HS ;
McMahan, M ;
McParland, C ;
Muller, WFJ ;
Olson, DL ;
Partlan, MD ;
Porile, NT ;
Potenza, R ;
Rai, G ;
Rasmussen, J ;
Ritter, HG ;
Romanski, J ;
Romero, JL ;
Russo, GV ;
Sann, H ;
Scharenberg, R ;
Scott, A ;
Shao, Y ;
Srivastava, BK ;
Symons, TJM ;
Tincknell, M ;
Tuve, C ;
Wang, S ;
Warren, P ;
Wieman, HH ;
Wolf, K .
PHYSICS LETTERS B, 1996, 381 (1-3) :35-39