Relationships between linear dynamically varying systems and jump linear systems

被引:2
作者
Bohacek, S [1 ]
Jonckheere, EA
机构
[1] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
[2] Univ So Calif, Dept Elect Engn Syst, Los Angeles, CA 90089 USA
关键词
linear parameter varying (LPV) systems; linear dynamically varying (LDV) systems; jump linear (JL) systems; Markov partitions;
D O I
10.1007/s00498-003-0138-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The connection between linear dynamically varying (LDV) systems and jump linear (JL) systems is explored. LDV systems have been used to model the error in nonlinear tracking problems. Some nonlinear systems, for example Axiom A systems, admit Markov partitions and their dynamics can be quantized as Markov chains. In this case the tracking error can be approximated by a JL system. It is shown that (i) JL controllers for arbitrarily fine partitions exist if and only if the LDV controller exists; (ii) the JL controller stabilizes the nonlinear dynamical system; (iii) JL controllers provide approximations of the LDV controller. Finally, it is shown that this process is robust against such errors in the probability structure as the inaccurate assumption that an easily constructed partition is Markov.
引用
收藏
页码:207 / 224
页数:18
相关论文
共 27 条
[11]   DISCRETE-TIME LQ-OPTIMAL CONTROL-PROBLEMS FOR INFINITE MARKOV JUMP PARAMETER-SYSTEMS [J].
COSTA, OLV ;
FRAGOSO, MD .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (12) :2076-2088
[12]  
Dugundji J., 1970, TOPOLOGY
[13]   Optimal control for continuous-time linear quadratic problems with infinite Markov jump parameters [J].
Fragoso, MD ;
Baczynski, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (01) :270-297
[14]  
FRAGOSO MD, 1995, CONTR-THEOR ADV TECH, V10, P1459
[15]   Affine parameter-dependent Lyapunov functions and real parametric uncertainty [J].
Gahinet, P ;
Apkarian, P ;
Chilali, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :436-442
[16]  
JI Y, 1991, CONTR-THEOR ADV TECH, V7, P247
[17]  
JI Y, 1990, CONTR-THEOR ADV TECH, V10, P1459
[18]   BOUNDED SAMPLE PATH CONTROL OF DISCRETE-TIME JUMP LINEAR-SYSTEMS [J].
JI, YD ;
CHIZECK, HJ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (02) :277-284
[19]  
JONCKHEERE EA, 1998, P S MATH THEORY NETW, P225
[20]  
Katok A., 1995, INTRO MODERN THEORY, DOI 10.1017/CBO9780511809187