Prediction of RNA Pseudoknots Using Heuristic Modeling with Mapping and Sequential Folding

被引:44
作者
Dawson, Wayne K. [1 ]
Fujiwara, Kazuya [1 ]
Kawai, Gota [1 ]
机构
[1] Chiba Inst Technol, Dept Life & Environm Sci, Narashino, Chiba 275, Japan
来源
PLOS ONE | 2007年 / 2卷 / 09期
关键词
D O I
10.1371/journal.pone.0000905
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting RNA secondary structure is often the first step to determining the structure of RNA. Prediction approaches have historically avoided searching for pseudoknots because of the extreme combinatorial and time complexity of the problem. Yet neglecting pseudoknots limits the utility of such approaches. Here, an algorithm utilizing structure mapping and thermodynamics is introduced for RNA pseudoknot prediction that finds the minimum free energy and identifies information about the flexibility of the RNA. The heuristic approach takes advantage of the 5' to 3' folding direction of many biological RNA molecules and is consistent with the hierarchical folding hypothesis and the contact order model. Mapping methods are used to build and analyze the folded structure for pseudoknots and to add important 3D structural considerations. The program can predict some well known pseudoknot structures correctly. The results of this study suggest that many functional RNA sequences are optimized for proper folding. They also suggest directions we can proceed in the future to achieve even better results.
引用
收藏
页数:7
相关论文
共 30 条
[11]   Non-coding RNAs:: hope or hype? [J].
Hüttenhofer, A ;
Schattner, P ;
Polacek, N .
TRENDS IN GENETICS, 2005, 21 (05) :289-297
[12]   NMR structure of a classical pseudoknot: Interplay of single- and double-stranded RNA [J].
Kolk, MH ;
van der Graaf, M ;
Wijmenga, SS ;
Pleij, CWA ;
Heus, HA ;
Hilbers, CW .
SCIENCE, 1998, 280 (5362) :434-438
[13]   RANDOM MUTATIONS TO EVALUATE THE ROLE OF BASES AT 2 IMPORTANT SINGLE-STRANDED REGIONS OF GENOMIC HDV RIBOZYME [J].
KUMAR, PKR ;
SUH, YA ;
MIYASHIRO, H ;
NISHIKAWA, F ;
KAWAKAMI, J ;
TAIRA, K ;
NISHIKAWA, S .
NUCLEIC ACIDS RESEARCH, 1992, 20 (15) :3919-3924
[14]   The interaction networks of structured RNAs [J].
Lescoute, A. ;
Westhof, E. .
NUCLEIC ACIDS RESEARCH, 2006, 34 (22) :6587-6604
[15]   RNA pseudoknot prediction in energy-based models [J].
Lyngso, RB ;
Pedersen, CNS .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) :409-427
[16]   How the folding rate constant of simple, single-domain proteins depends on the number of native contacts [J].
Makarov, DE ;
Keller, CA ;
Plaxco, KW ;
Metiu, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (06) :3535-3539
[17]   Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria [J].
Mandal, M ;
Boese, B ;
Barrick, JE ;
Winkler, WC ;
Breaker, RR .
CELL, 2003, 113 (05) :577-586
[18]   A thermodynamic framework for Mg2+ binding to RNA [J].
Misra, VK ;
Draper, DE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (22) :12456-12461
[19]   An NMR and mutational analysis of an RNA pseudoknot of Escherichia coli tmRNA involved in trans-translation [J].
Nameki, N ;
Chattopadhyay, P ;
Himeno, H ;
Muto, A ;
Kawai, G .
NUCLEIC ACIDS RESEARCH, 1999, 27 (18) :3667-3675
[20]   A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal [J].
Plant, EP ;
Pérez-Alvarado, GC ;
Jacobs, JL ;
Mukhopadhyay, B ;
Hennig, M ;
Dinman, JD .
PLOS BIOLOGY, 2005, 3 (06) :1012-1023