Application of principal component analysis to a full profile correlative analysis of FTIR spectra

被引:10
作者
Broderick, Scott R. [1 ,2 ]
Suh, Changwon [1 ,2 ]
Provine, J. [3 ]
Roper, Christopher S. [4 ,5 ]
Maboudian, Roya [4 ]
Howe, Roger T. [3 ]
Rajan, Krishna [1 ,2 ]
机构
[1] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
[2] Iowa State Univ, Inst Combinatorial Discovery, Ames, IA 50011 USA
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[4] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
[5] HRL Labs LLC, Malibu, CA USA
关键词
materials informatics; principal component analysis; process control; infrared spectroscopy; polycrystalline silicon carbide films; POLYCRYSTALLINE 3C-SIC FILMS; TOF-SIMS; SILICON-CARBIDE; 1,3-DISILABUTANE; DEPOSITION; COATINGS; STRESS; GROWTH;
D O I
10.1002/sia.3813
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have demonstrated an informatics methodology for finding correlations between the full profile Fourier transform infrared spectra of polycrystalline 3C-silicon carbide (poly-SiC) films and their growth conditions, thereby developing high-throughput structure-process relationships. Because SiC films are a structural element in photonic sensors, this paper focuses on the interpretation of their optical response, the multivariate tracking of critical processing pathways, and the identification of controlling processing mechanisms. Using principal component analysis, we have developed a data analysis tool to aid in the assessment of the relative contributions of experimental parameters in low-pressure chemical vapor deposition processes to optical responses on the basis of the size of eigenvalues of the spectral data set. The applied methodology for identifying spectral relationships of stoichiometry, dopant chemistry, and microstructure of poly-SiC provides more effective guidelines to manipulate optical responses by controlling multiple experimental parameters. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:365 / 371
页数:7
相关论文
共 35 条
[1]   Hard Si-N-C coatings produced by pulsed glow discharge deposition [J].
Afanasyev-Charkin, I ;
Nastasi, M .
SURFACE & COATINGS TECHNOLOGY, 2004, 186 (1-2) :108-111
[2]  
[Anonymous], 2002, Principal components analysis
[3]   FORMATION OF SIC IN SILICON BY ION IMPLANTATION [J].
BORDERS, JA ;
PICRAUX, ST ;
BEEZHOLD, W .
APPLIED PHYSICS LETTERS, 1971, 18 (11) :509-&
[4]  
Broderick S.R., 2009, Stat. Anal. Data Min, V6, P353
[5]   Tracking Chemical Processing Pathways in Combinatorial Polymer Libraries via Data Mining [J].
Broderick, Scott R. ;
Nowers, Joseph R. ;
Narasimhan, Balaji ;
Rajan, Krishna .
JOURNAL OF COMBINATORIAL CHEMISTRY, 2010, 12 (02) :270-277
[6]   Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films [J].
Catrysse, Peter B. ;
Fan, Shanhui .
PHYSICAL REVIEW B, 2007, 75 (07)
[7]  
Davis J.C., 2015, Statistics and data analysis in Geology, V3rd
[8]   Intensive light emission from SiCN films by reactive RF magnetron sputtering [J].
Du, X-W. ;
Fu, Y. ;
Sun, J. ;
Yao, P. ;
Cui, L. .
MATERIALS CHEMISTRY AND PHYSICS, 2007, 103 (2-3) :456-460
[9]   Surface analysis of photolithographic patterns using ToF-SIMS and PCA [J].
Dubey, Manish ;
Emoto, Kazunori ;
Cheng, Fang ;
Gamble, Lara J. ;
Takahashi, Hironobu ;
Grainger, David W. ;
Castner, David G. .
SURFACE AND INTERFACE ANALYSIS, 2009, 41 (08) :645-652
[10]  
Eriksson L., 1999, MULTI MEGAVARIATE DA