The phosphatidylinositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non-small cell lung cancer xenografts

被引:141
作者
Ihle, NT
Paine-Murrieta, G
Berggren, MI
Baker, A
Tate, WR
Wipf, P
Abraham, RT
Kirkpatrick, DL
Powis, G
机构
[1] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
[2] Univ Arizona, Arizona Canc Ctr, Tucson, AZ 85721 USA
[3] Burnham Inst, La Jolla, CA 92037 USA
[4] ProlX Pharmaceut, Tucson, AZ USA
关键词
D O I
10.1158/1535-7163.MCT-05-0149
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Epidermal growth factor receptor (EGFR) inhibitors such as gefitinib show antitumor activity in a subset of non -small cell lung cancer (NSCLC) patients having mutated EGFR. Recent work shows that phosphatidylinositol-3-kinase (PI3-K) is coupled to the EGFR only in NSCLC cell lines expressing ErbB-3 and that EGFR inhibitors do not inhibit PI3-K signaling in these cells. The central role PI3-K plays in cell survival suggests that a PI3-K inhibitor offers a strategy to increase the antitumor activity of EGFR inhibitors in resistant NSCL tumors that do not express ErbB-3. We show that PX-866, a PI3-K inhibitor with selectivity for p110 alpha, potentiates the antitumor activity of gefitinib against even large A-549 NSCL xenografts giving complete tumor growth control in the early stages of treatment. A-549 xenograft phospho-Akt was inhibited by PX-866 but not by gefitinib. A major toxicity of PX-866 administration was hyperglycemia with decreased glucose tolerance, which was reversed upon cessation of treatment. The decreased glucose tolerance caused by PX-866 was insensitive to the AMP-activated protein kinase inhibitor metformin but reversed by insulin and by the peroxisome proliferator-activated receptor-gamma activator pioglitazone. Prolonged PX-866 administration also caused increased neutrophil counts. Thus, PX-866, by inhibiting PI3-K signaling, may have clinical use in increasing the response to EGFR inhibitors such as gefitinib in patients with NSCLC and possibly in other cancers who do not respond to EGFR inhibition.
引用
收藏
页码:1349 / 1357
页数:9
相关论文
共 50 条
[1]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[2]  
Arteaga CL, 2002, ONCOLOGIST, V7, P31
[3]   Somatic mutations of EGFR in colorectal cancers and glioblastomas [J].
Barber, TD ;
Vogelstein, B ;
Kinzler, KW ;
Velculescu, VE .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 351 (27) :2883-2883
[4]   CAP defines a second signalling pathway required for insulin-stimulated glucose transport [J].
Baumann, CA ;
Ribon, V ;
Kanzaki, M ;
Thurmond, DC ;
Mora, S ;
Shigematsu, S ;
Bickel, PE ;
Pessin, JE ;
Saltiel, AR .
NATURE, 2000, 407 (6801) :202-207
[5]   Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors [J].
Bianco, R ;
Shin, I ;
Ritter, CA ;
Yakes, FM ;
Basso, A ;
Rosen, N ;
Tsurutani, J ;
Dennis, PA ;
Mills, GB ;
Arteaga, CL .
ONCOGENE, 2003, 22 (18) :2812-2822
[6]  
Brabender J, 2001, CLIN CANCER RES, V7, P1850
[7]  
Brognard J, 2001, CANCER RES, V61, P3986
[8]   The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid β-oxidation [J].
Buzzai, M ;
Bauer, DE ;
Jones, RG ;
DeBerardinis, RJ ;
Hatzivassiliou, G ;
Elstrom, RL ;
Thompson, CB .
ONCOGENE, 2005, 24 (26) :4165-4173
[9]   The phosphoinositide 3-kinase pathway [J].
Cantley, LC .
SCIENCE, 2002, 296 (5573) :1655-1657
[10]   New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase AKT pathway [J].
Cantley, LC ;
Neel, BG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (08) :4240-4245