Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats

被引:83
作者
Lankveld, Danielle P. K. [1 ]
Rayavarapu, Raja G. [2 ]
Krystek, Petra [3 ]
Oomen, Agnes G. [4 ]
Verharen, Hennie W. [1 ]
van Leeuwen, Ton G. [2 ,5 ]
De Jong, Wim H. [1 ]
Manohar, Srirang [2 ]
机构
[1] Natl Inst Publ Hlth & Environm RIVM, Lab Hlth Protect Res, Bilthoven, Netherlands
[2] Univ Twente, Fac Sci & Technol, MIRA Inst Biomed Technol & Tech Med, Biomed Photon Imaging Grp, Enschede, Netherlands
[3] Philips Res, MiPlaza Mat Anal, NL-5656 AE Eindhoven, Netherlands
[4] Natl Inst Publ Hlth & Environm RIVM, Ctr Subst & Integrated Risk Assessment, Bilthoven, Netherlands
[5] Univ Amsterdam, Acad Med Ctr, NL-1105 AZ Amsterdam, Netherlands
关键词
blood clearance; gold; nanorods; systemic administration; tissue distribution; POLYMERIC NANOPARTICLES; PARTICLE-SIZE; BIODISTRIBUTION; CELLS; MECHANISM; GROWTH; PEG; PHARMACOKINETICS; CYTOTOXICITY; CIRCULATION;
D O I
10.2217/NNM.10.122
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Aims: To develop and determine the safety of gold nanorods, whose aspect ratios can be tuned to obtain plasmon peaks between 650 and 850 nm, as contrast enhancing agents for diagnostic and therapeutic applications. Materials & methods: In this study we compared the blood clearance and tissue distribution of cetyl trimethyl ammonium bromide (CTAB)-capped and polyethylene glycol (PEG)-coated gold nanorods after intravenous injection in the tail vein of rats. The gold content in blood and various organs was measured quantitatively with inductively coupled plasma mass spectrometry. Results & discussion: The CTAB-capped gold nanorods were almost immediately (< 15 min) cleared from the blood circulation whereas the PEGylation of gold nanorods resulted in a prolonged blood circulation with a half-life time of 19 h and more wide spread tissue distribution. While for the CTAB-capped gold nanorods the tissue distribution was limited to liver, spleen and lung, the PEGylated gold nanorods also distributed to kidney, heart, thymus, brain and testes. PEGylation of the gold nanorods resulted in the spleen being the organ with the highest exposure, whereas for the non-PEGylated CTAB-capped gold nanorods the liver was the organ with the highest exposure, per gram of organ. Conclusion: The PEGylation of gold nanorods resulted in a prolongation of the blood clearance and the highest organ exposure in the spleen. In view of the time frame (up to 48 h) of the observed presence in blood circulation, PEGylated gold nanorods can be considered to be promising candidates for therapeutic and diagnostic imaging purposes.
引用
收藏
页码:339 / 349
页数:11
相关论文
共 47 条
[1]   Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy [J].
Aggarwal, Parag ;
Hall, Jennifer B. ;
McLeland, Christopher B. ;
Dobrovolskaia, Marina A. ;
McNeil, Scott E. .
ADVANCED DRUG DELIVERY REVIEWS, 2009, 61 (06) :428-437
[2]   The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice [J].
Akiyama, Yasuyuki ;
Mori, Takeshi ;
Katayama, Yoshiki ;
Niidome, Takuro .
JOURNAL OF CONTROLLED RELEASE, 2009, 139 (01) :81-84
[3]   Factors affecting the clearance and biodistribution of polymeric nanoparticles [J].
Alexis, Frank ;
Pridgen, Eric ;
Molnar, Linda K. ;
Farokhzad, Omid C. .
MOLECULAR PHARMACEUTICS, 2008, 5 (04) :505-515
[4]   Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin of Cytotoxicity and Surface Effects [J].
Alkilany, Alaaldin M. ;
Nagaria, Pratik K. ;
Hexel, Cole R. ;
Shaw, Timothy J. ;
Murphy, Catherine J. ;
Wyatt, Michael D. .
SMALL, 2009, 5 (06) :701-708
[5]   Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models [J].
Balogh, Lajos ;
Nigavekar, Shraddha S. ;
Nair, Bindu M. ;
Lesniak, Wojciech ;
Zhang, Chunxin ;
Sung, Lok Yun ;
Kariapper, Muhammed S. T. ;
El-Jawahri, Areej ;
Llanes, Mikel ;
Bolton, Brian ;
Mamou, Fatema ;
Tan, Wei ;
Hutson, Alan ;
Minc, Leah ;
Khan, Mohamed K. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2007, 3 (04) :281-296
[6]   Drug delivery and nanoparticles: Applications and hazards [J].
De Jong, Wim H. ;
Borm, Paul J. A. .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2008, 3 (02) :133-149
[7]   Particle size-dependent organ distribution of gold nanoparticles after intravenous administration [J].
De Jong, Wim H. ;
Hagens, Werner I. ;
Krystek, Petra ;
Burger, Marina C. ;
Sips, Adrienne J. A. M. ;
Geertsma, Robert E. .
BIOMATERIALS, 2008, 29 (12) :1912-1919
[8]   Splenic trapping of nanoparticles: Complementary approaches for in situ studies [J].
Demoy, M ;
Gibaud, S ;
Andreux, JP ;
Weingarten, C ;
Gouritin, B ;
Couvreur, P .
PHARMACEUTICAL RESEARCH, 1997, 14 (04) :463-468
[9]   Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles [J].
Dobrovolskaia, Marina A. ;
Patri, Anil K. ;
Zheng, Jiwen ;
Clogston, Jeffrey D. ;
Ayub, Nader ;
Aggarwal, Parag ;
Neun, Barry W. ;
Hall, Jennifer B. ;
McNeil, Scott E. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2009, 5 (02) :106-117
[10]   The dawning era of polymer therapeutics [J].
Duncan, R .
NATURE REVIEWS DRUG DISCOVERY, 2003, 2 (05) :347-360