H∞-control theory of fluid dynamics

被引:35
作者
Barbu, V [1 ]
Sritharan, SS
机构
[1] Univ Iasi, Dept Math, Iasi, Romania
[2] Space & Naval Warfare Syst Ctr, San Diego, CA 92152 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1998年 / 454卷 / 1979期
关键词
robust control; control of fluids; active flow control; H-infinity control; Hamilton-Jacobi theory; Hamiltonian systems;
D O I
10.1098/rspa.1998.0289
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Robust (or H-infinity-) control theory has been an expanding subject in recent years because of its wide applications and its close connection to operator theory on Hardy spaces. We develop an H-infinity-control theory for fluid dynamics. Our result establishes that if the H-infinity-control problem for the linearized Navier-Stokes equation has a gamma-suboptimal solution, then the corresponding H-infinity-control problem for the nonlinear system has a solution for small perturbations of the steady solution. The proof relies on the existence of positively invariant manifolds for certain Hamiltonian systems.
引用
收藏
页码:3009 / 3033
页数:25
相关论文
共 53 条
[1]  
[Anonymous], 1974, LECT NOTES MATH
[2]   THE H-INFINITY-PROBLEM FOR INFINITE-DIMENSIONAL SEMILINEAR SYSTEMS [J].
BARBU, V .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (04) :1017-1027
[3]  
Barbu V., 1994, Mathematical Methods in Optimization of Differential Systems
[4]  
Bittanti S., 2012, RICCATI EQUATION
[5]  
BRUNS JA, 1994, P 33 IEEE C DEC CONT, P289
[6]   SOME NEW ANALYTIC AND COMPUTATIONAL RESULTS FOR OPERATOR RICCATI EQUATIONS [J].
CASTI, J ;
LJUNG, L .
SIAM JOURNAL ON CONTROL, 1975, 13 (04) :817-826
[7]  
Chandrasekhar S, 1981, HYDRODYNAMIC HYDROMA
[8]  
Curtain RF, 1995, An Introduction to Infinite-Dimensional Linear Systems Theory
[9]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[10]  
Duvaut G., 1976, GRUNDLEHREN MATH WIS, DOI 10.1007/978-3-642-66165-5