A study of the effects of internal organ motion on dose escalation in conformal prostate treatments

被引:38
作者
Happersett, L
Mageras, GS
Zelefsky, MJ
Burman, CM
Leibel, SA
Chui, C
Fuks, Z
Bull, S
Ling, CC
Kutcher, GJ
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Phys Med, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Radiat Oncol, New York, NY 10021 USA
[3] Columbia Univ, Dept Radiat Oncol, New York, NY USA
关键词
organ motion; prostate; conformal radiotherapy; intensity modulated radiotherapy;
D O I
10.1016/S0167-8140(03)00039-2
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: To assess the effect of internal organ motion on the dose distributions and biological indices for the target and non-target organs for three different conformal prostate treatment techniques. Materials and methods: We examined three types of treatment plans in 20 patients: (1) a six field plan, with a prescribed dose of 75.6 Gy; (2) the same six field plan to 72 Gy followed by a boost to 81 Gy; and (3) a five field plan with intensity modulated beams delivering 81 Gy. Treatment plans were designed using an initial CT data set (planning) and applied to three subsequent CT scans (treatment). The treatment CT contours were used to represent patient specific organ displacement; in addition, the dose distribution was convolved with a Gaussian distribution to model random setup error. Dose-volume histograms were calculated using an organ deformation model in which the movement between scans of individual points interior to the organs was tracked and the dose accumulated. The tumor control probability (TCP) for the prostate and proximal half of seminal vesicles (clinical target volume, CTV), normal tissue complication probability (NTCP) for the rectum and the percent volume of bladder wall receiving at least 75 Gy were calculated. Results: The patient averaged increase in the planned TCP between plan types 2 and 1 and types 3 and 1 was 9.8% (range 4.9-12.5%) for both, whereas the corresponding increases in treatment TCP were 9.0% (1.3 - 16%) and 8.1% (- 1.3 - 13.8%). In all patients, plans 2 and 3 (81 Gy) exhibited equal or higher treatment TCP than plan 1 (75.6 Gy). The maximum treatment NTCP for rectum never exceeded the planning constraint and percent volume of bladder wall receiving at least 75 Gy was similar in the planning and treatment scans for all three plans. Conclusion: For plans that deliver a uniform prescribed dose to the planning target volume (PTV) (plan 1), current margins are adequate. In plans that further escalate the dose to part of the PTV (plans 2 and 3), in a fraction of the cases the CTV dose increase is less than planned, yet in all cases the TCP values are higher relative to the uniform dose PTV (plan 1). Doses to critical organs remain within the planning criteria. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 31 条
[1]  
[Anonymous], 1993, 50 ICRU
[2]   Prostate target volume variations during a course of radiotherapy [J].
Antolak, JA ;
Rosen, II ;
Childress, CH ;
Zagars, GK ;
Pollack, A .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 42 (03) :661-672
[3]   MEASUREMENT OF PROSTATE MOVEMENT OVER THE COURSE OF ROUTINE RADIOTHERAPY USING IMPLANTED MARKERS [J].
BALTER, JM ;
SANDLER, HM ;
LAM, K ;
BREE, RL ;
LICHTER, AS ;
TENHAKEN, RK .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1995, 31 (01) :113-118
[4]   Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: A strategy for large-scale implementation for the treatment of carcinoma of the prostate [J].
Burman, C ;
Chui, CS ;
Kutcher, G ;
Leibel, S ;
Zelefsky, M ;
LoSasso, T ;
Spirou, S ;
Wu, QW ;
Yang, J ;
Stein, J ;
Mohan, R ;
Fuks, Z ;
Ling, CC .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1997, 39 (04) :863-873
[5]   FITTING OF NORMAL TISSUE TOLERANCE DATA TO AN ANALYTIC-FUNCTION [J].
BURMAN, C ;
KUTCHER, GJ ;
EMAMI, B ;
GOITEIN, M .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1991, 21 (01) :123-135
[6]   THE INFLUENCE OF SCATTER ON THE DESIGN OF OPTIMIZED INTENSITY MODULATIONS [J].
CHEN, Z ;
WANG, XH ;
BORTFELD, T ;
MOHAN, R ;
REINSTEIN, L .
MEDICAL PHYSICS, 1995, 22 (11) :1727-1733
[7]   Image-based dose planning of intracavitary brachytherapy: Registration of serial-imaging studies using deformable anatomic templates [J].
Christensen, GE ;
Carlson, B ;
Chao, KSC ;
Yin, P ;
Grigsby, PW ;
Nguyen, K ;
Dempsey, JF ;
Lerma, FA ;
Bae, KT ;
Vannier, MW ;
Williamson, JF .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (01) :227-243
[8]  
Chui C. S., 1992, MED PHYS, V19, P814
[9]  
Eisbruch A, 1999, Acta Otorhinolaryngol Belg, V53, P271
[10]   CAUSES AND CONSEQUENCES OF INHOMOGENEOUS DOSE DISTRIBUTIONS IN RADIATION-THERAPY [J].
GOITEIN, M .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1986, 12 (04) :701-704