Chilling-sensitive, post-transcriptional regulation of a plant fatty acid desaturase expressed in yeast

被引:42
作者
Dyer, JM [1 ]
Chapital, DC [1 ]
Cary, JW [1 ]
Pepperman, AB [1 ]
机构
[1] USDA ARS, So Reg Res Ctr, New Orleans, LA 70124 USA
关键词
fatty acid desaturase; chilling; yeast; lipid; epitope tagging;
D O I
10.1006/bbrc.2001.4667
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants respond to chilling exposure by increasing the relative proportion of polyunsaturated fatty acids in their lipids. However, unlike the response in many other organisms, plant fatty acid desaturase genes are typically not upregulated during this process. We expressed the Brassica napus FADS gene, which encodes an enzyme for synthesis of linolenic acid, in Saccharomyces cerevisiae and observed a temperature-dependent increase in linolenic acid production at cooler growth temperatures. Untransformed yeast cells, however, responded to cooler temperatures primarily by shortening fatty acid chains, even when polyunsaturated fatty acids were supplied in the growth media. Measurement of the steady-state levels of Fad3 protein in transformed yeast revealed an 8.5-fold increase in steady-state amount of desaturase enzyme when cells were cultivated at cooler temperatures. The increase was not due to changes in transcriptional activity, since Northern hybridization revealed no appreciable changes in abundance of FAD3 transcripts at cooler temperatures. Taken together, the results suggest that the increase in linolenic acid content in cells containing Fad3 was not due to enhanced physiological demand for polyunsaturated fatty acids by yeast, but rather a cold-inducible, post-transcriptional increase in steady-state amount of plant desaturase enzyme. Implications for plant adaptation to chilling are discussed. (C) 2001 Academic Press.
引用
收藏
页码:1019 / 1025
页数:7
相关论文
共 37 条
[1]  
[Anonymous], CURRENT PROTOCOLS MO
[2]   MAP-BASED CLONING OF A GENE CONTROLLING OMEGA-3-FATTY-ACID DESATURATION IN ARABIDOPSIS [J].
ARONDEL, V ;
LEMIEUX, B ;
HWANG, I ;
GIBSON, S ;
GOODMAN, HM ;
SOMERVILLE, CR .
SCIENCE, 1992, 258 (5086) :1353-1355
[3]   A POSTTRANSLATIONAL MODIFICATION OF THE PHOTOSYSTEM-II SUBUNIT CP29 PROTECTS MAIZE FROM COLD STRESS [J].
BERGANTINO, E ;
DAINESE, P ;
CEROVIC, Z ;
SECHI, S ;
BASSI, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (15) :8474-8481
[4]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[5]   Formation of conjugated Δ8,Δ10-double bonds by Δ12-oleic-acid desaturase-related enzymes -: Biosynthetic origin of calendic acid [J].
Cahoon, EB ;
Ripp, KG ;
Hall, SE ;
Kinney, AJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (04) :2637-2643
[6]   Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast [J].
Carratu, L ;
Franceschelli, S ;
Pardini, CL ;
Kobayashi, GS ;
Horvath, I ;
Vigh, L ;
Maresca, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (09) :3870-3875
[7]   Functional expression of the extraplastidial Arabidopsis thaliana oleate desaturase gene (FAD2) in Saccharomyces cerevisiae [J].
Covello, PS ;
Reed, DW .
PLANT PHYSIOLOGY, 1996, 111 (01) :223-226
[8]   The sorting sequence of the peroxisomal integral membrane protein PMP47 is contained within a short hydrophilic loop [J].
Dyer, JM ;
McNew, JA ;
Goodman, JM .
JOURNAL OF CELL BIOLOGY, 1996, 133 (02) :269-280
[9]   CLONING OF A TEMPERATURE-REGULATED GENE ENCODING A CHLOROPLAST OMEGA-3 DESATURASE FROM ARABIDOPSIS-THALIANA [J].
GIBSON, S ;
ARONDEL, V ;
IBA, K ;
SOMERVILLE, C .
PLANT PHYSIOLOGY, 1994, 106 (04) :1615-1621
[10]  
GIETZ RD, 1994, MOL GENETICS YEAST P, P121