Stability of coalescing binary stars against gravitational collapse: Hydrodynamical simulations

被引:35
作者
Shibata, M [1 ]
Baumgarte, TW
Shapiro, SL
机构
[1] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Osaka 5600043, Japan
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[4] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
来源
PHYSICAL REVIEW D | 1998年 / 58卷 / 02期
关键词
D O I
10.1103/PhysRevD.58.023002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform simulations of relativistic binary stars in post-Newtonian gravity to investigate their dynamical stability prior to merger against gravitational collapse in a tidal field. In general, our equations are only strictly accurate to first post-Newtonian order, but they recover full general relativity for spherical, static stars. We study both corotational and irrotational binary configurations of identical stars in circular orbits. We adopt a soft, adiabatic equation of state with Gamma=1.4, for which the onset of instability occurs at a sufficiently small value of the compaction M/R that a post-Newtonian approximation is quite accurate. For such a soft equation of state there is no innermost stable circular orbit, so that we can study arbitrarily close binaries. This choice still allows us to study all the qualitative features exhibited by any adiabatic equation of state regarding stability against gravitational collapse. We demonstrate that, independent of the internal stellar velocity profile, the tidal field from a binary companion stabilizes a star against gravitational collapse. [S0556-2821(98)07114-8].
引用
收藏
页数:11
相关论文
共 33 条
[1]   LIGO - THE LASER-INTERFEROMETER-GRAVITATIONAL-WAVE-OBSERVATORY [J].
ABRAMOVICI, A ;
ALTHOUSE, WE ;
DREVER, RWP ;
GURSEL, Y ;
KAWAMURA, S ;
RAAB, FJ ;
SHOEMAKER, D ;
SIEVERS, L ;
SPERO, RE ;
THORNE, KS ;
VOGT, RE ;
WEISS, R ;
WHITCOMB, SE ;
ZUCKER, ME .
SCIENCE, 1992, 256 (5055) :325-333
[2]   Formulation for nonaxisymmetric uniformly rotating equilibrium configurations in the second post-Newtonian approximation of general relativity [J].
Asada, H ;
Shibata, M .
PHYSICAL REVIEW D, 1996, 54 (08) :4944-4954
[3]   Post-newtonian hydrodynamic equations using the (3+1) formalism in general relativity [J].
Asada, H ;
Shibata, M ;
Futamase, T .
PROGRESS OF THEORETICAL PHYSICS, 1996, 96 (01) :81-112
[4]   Stability of relativistic neutron stars in binary orbit [J].
Baumgarte, TW ;
Cook, GB ;
Scheel, MA ;
Shapiro, SL ;
Teukolsky, SA .
PHYSICAL REVIEW D, 1998, 57 (10) :6181-6184
[5]   General relativistic models of binary neutron stars in quasiequilibrium [J].
Baumgarte, TW ;
Cook, GB ;
Scheel, MA ;
Shapiro, SL ;
Teukolsky, SA .
PHYSICAL REVIEW D, 1998, 57 (12) :7299-7311
[6]   Binary neutron stars in general relativity: Quasiequilibrium models [J].
Baumgarte, TW ;
Cook, GB ;
Scheel, MA ;
Shapiro, SL ;
Teukolsky, SA .
PHYSICAL REVIEW LETTERS, 1997, 79 (07) :1182-1185
[7]   TIDAL INTERACTIONS OF INSPIRALING COMPACT BINARIES [J].
BILDSTEN, L ;
CUTLER, C .
ASTROPHYSICAL JOURNAL, 1992, 400 (01) :175-180
[8]   Relativistic formalism to compute quasiequilibrium configurations of nonsynchronized neutron star binaries [J].
Bonazzola, S ;
Gourgoulhon, E ;
Marck, JA .
PHYSICAL REVIEW D, 1997, 56 (12) :7740-7749
[9]   THE VIRGO PROJECT - A WIDE BAND ANTENNA FOR GRAVITATIONAL-WAVE DETECTION [J].
BRADASCHIA, C ;
DELFABBRO, R ;
DIVIRGILIO, A ;
GIAZOTTO, A ;
KAUTZKY, H ;
MONTELATICI, V ;
PASSUELLO, D ;
BRILLET, A ;
CREGUT, O ;
HELLO, P ;
MAN, CN ;
MANH, PT ;
MARRAUD, A ;
SHOEMAKER, D ;
VINET, JY ;
BARONE, F ;
DIFIORE, L ;
MILANO, L ;
RUSSO, G ;
AGUIRREGABIRIA, JM ;
BEL, H ;
DURUISSEAU, JP ;
LEDENMAT, G ;
TOURRENC, P ;
CAPOZZI, M ;
LONGO, M ;
LOPS, M ;
PINTO, I ;
ROTOLI, G ;
DAMOUR, T ;
BONAZZOLA, S ;
MARCK, JA ;
GOURGHOULON, Y ;
HOLLOWAY, LE ;
FULIGNI, F ;
IAFOLLA, V ;
NATALE, G .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1990, 289 (03) :518-525
[10]   Central density of a neutron star is unaffected by a binary companion at linear order in mu/R [J].
Brady, PR ;
Hughes, SA .
PHYSICAL REVIEW LETTERS, 1997, 79 (07) :1186-1188