Multifunctional label-free electrochemical biosensor based on an integrated aptamer

被引:177
作者
Du, Yan
Li, Bingling
Wei, Hui
Wang, Yuling
Wang, Erkang [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Peoples R China
关键词
D O I
10.1021/ac800303c
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Aptamers, which are in vitro selected functional oligonucleotides, have been employed to design novel biosensors (i.e., aptasensors) due to their inherent selectivity, affinity, and their multifarious advantages over traditional recognition elements. In this work, we reported a multifunctional reusable label-free electrochemical biosensor based on an integrated aptamer for parallel detection of adenosine triphosphate (ATP) and alpha-thrombin, by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A An electrode as the sensing surface was modified with a part DNA duplex which contained a 5'-thiolated partly complementary strand (PCS) and a mixed aptamer (MBA). The unimolecular MBA contained small-molecule ATP binding aptamer (ABA) and also protein alpha-thrombin binding aptamer (TBA). Thus, the aptasensor could be used for detection of ATP and alpha-thrombin both. The detection limit of ATP was 1 x 10(-8) M, and its detection range could extend up to 10(-4) M, whereas the detection limit of alpha-thrombin was 1 x 10(-11) M, and its detection range was from 1 x 10(-11) to 1 x 10(-7) M. Meanwhile, after detecting alpha-thrombin, the sensing interface could be used for ATP recognition as well. The aptasensor regeneration could be realized by rehybridizing of the MBA strand with the partly complementary strand immobilized on the Au surface after ATP detection or by treating with a large amount of ATP and then rehybridizing the MBA strand with the partly complementary strand immobilized on the An surface after alpha-thrombin detection. The aptasensor fabricated exhibited several advantages such as label-free detection, high sensitivity, regeneration, and multifunctional recognition. It also showed the detectability in biological fluid. Therein it held promising potential for integration of the sensing ability such as the simultaneous detection for multianalysis in the future.
引用
收藏
页码:5110 / 5117
页数:8
相关论文
共 46 条
[1]  
Baker BR, 2006, J AM CHEM SOC, V128, P3138, DOI 10.1021/ja056957p
[2]   Following aptamer-thrombin binding by force measurements [J].
Basnar, Bernhard ;
Elnathan, Roey ;
Willner, Itamar .
ANALYTICAL CHEMISTRY, 2006, 78 (11) :3638-3642
[3]   Analytical performances of aptamer-based sensing for thrombin detection [J].
Bini, Alessandra ;
Minunni, Maria ;
Tombelli, Sara ;
Centi, Sonia ;
Mascini, Marco .
ANALYTICAL CHEMISTRY, 2007, 79 (07) :3016-3019
[4]   Label-free protein recognition using an aptamer-based impedance measurement assay [J].
Cai, H ;
Lee, TMH ;
Hsing, IM .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 114 (01) :433-437
[5]   Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads [J].
Centi, Sonia ;
Tombelli, Sara ;
Minunni, Maria ;
Mascini, Marco .
ANALYTICAL CHEMISTRY, 2007, 79 (04) :1466-1473
[6]   Parallel analysis of two analytes in solutions or on surfaces by using a bifunctional aptamer: Applications for biosensing and logic gate operations [J].
Elbaz, Johann ;
Shlyahovsky, Bella ;
Li, Di ;
Willner, Itamar .
CHEMBIOCHEM, 2008, 9 (02) :232-239
[7]   INVITRO SELECTION OF RNA MOLECULES THAT BIND SPECIFIC LIGANDS [J].
ELLINGTON, AD ;
SZOSTAK, JW .
NATURE, 1990, 346 (6287) :818-822
[8]   Nucleic acid aptamers - From selection in vitro to applications in vivo [J].
Famulok, M ;
Mayer, G ;
Blind, M .
ACCOUNTS OF CHEMICAL RESEARCH, 2000, 33 (09) :591-599
[9]   Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor [J].
Hansen, JA ;
Wang, J ;
Kawde, AN ;
Xiang, Y ;
Gothelf, KV ;
Collins, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (07) :2228-2229
[10]   Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells [J].
Herr, Joshua K. ;
Smith, Joshua E. ;
Medley, Colin D. ;
Shangguan, Dihua ;
Tan, Weihong .
ANALYTICAL CHEMISTRY, 2006, 78 (09) :2918-2924