Multilevel IRT using dichotomous and polytomous response data

被引:72
作者
Fox, JP [1 ]
机构
[1] Univ Twente, Dept Res Methodol Measurement & Data Anal, NL-7500 AE Enschede, Netherlands
关键词
D O I
10.1348/000711005X38951
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A structural multilevel model is presented where some of the variables cannot be observed directly but are measured using tests or questionnaires. Observed dichotomous or ordinal polytomous response data serve to measure the latent variables using an item response theory model. The latent variables can be defined at any level of the multilevel model. A Bayesian procedure Markov chain Monte Carlo (MCMC), to estimate all parameters simultaneously is presented. It is shown that certain model checks and model comparisons can be done using the MCMC output. The techniques are illustrated using a simulation study and an application involving students' achievements on a mathematics test and test results regarding management characteristics of teachers and principles.
引用
收藏
页码:145 / 172
页数:28
相关论文
共 50 条
[11]   MCMC estimation and some model-fit analysis of multidimensional IRT models [J].
Béguin, AA ;
Glas, CAW .
PSYCHOMETRIKA, 2001, 66 (04) :541-561
[12]  
Bock RD, 1989, MULTILEVEL ANAL ED D
[13]   Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models [J].
Browne, WJ ;
Draper, D .
COMPUTATIONAL STATISTICS, 2000, 15 (03) :391-420
[14]   Monte Carlo estimation of Bayesian credible and HPD intervals [J].
Chen, MH ;
Shao, QM .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (01) :69-92
[15]  
Congdon P, 2001, BAYESIAN STAT MODELL
[16]   Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models [J].
Cowles, MK .
STATISTICS AND COMPUTING, 1996, 6 (02) :101-111
[17]  
Dempster AP, 1997, STAT COMPUT, V7, P247, DOI 10.1023/A:1018598421607
[18]   Bayesian modeling of measurement error in predictor variables using item response theory [J].
Fox, JP ;
Glas, CAW .
PSYCHOMETRIKA, 2003, 68 (02) :169-191
[19]   Bayesian estimation of a multilevel IRT model using Gibbs sampling [J].
Fox, JP ;
Glas, CAW .
PSYCHOMETRIKA, 2001, 66 (02) :271-288
[20]  
FOX JP, 2003, MULTILEVEL IRT MANUA