Nitrogen-doped graphene and its electrochemical applications

被引:949
作者
Shao, Yuyan [1 ]
Zhang, Sheng [1 ]
Engelhard, Mark H. [1 ]
Li, Guosheng [1 ]
Shao, Guocheng [1 ]
Wang, Yong [1 ,2 ]
Liu, Jun [1 ]
Aksay, Ilhan A. [3 ]
Lin, Yuehe [1 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
[2] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA
[3] Princeton Univ, Dept Biol & Chem Engn, Princeton, NJ 08544 USA
关键词
OXYGEN REDUCTION CATALYSTS; ELECTROLYTE FUEL-CELLS; FUNCTIONALIZED GRAPHENE; ELECTROCATALYTIC ACTIVITY; CARBON NANOSTRUCTURES; RAMAN-SPECTRA; HIGH-YIELD; GRAPHITE; STABILITY; NANOTUBES;
D O I
10.1039/c0jm00782j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-doped graphene (N-graphene) is obtained by exposing graphene to nitrogen plasma. N-graphene exhibits much higher electrocatalytic activity toward oxygen reduction and H2O2 reduction than graphene, and much higher durability and selectivity than the widely-used expensive Pt for oxygen reduction. The excellent electrochemical performance of N-graphene is attributed to nitrogen functional groups and the specific properties of graphene. This indicates that N-graphene is promising for applications in electrochemical energy devices (fuel cells, metal-air batteries) and biosensors.
引用
收藏
页码:7491 / 7496
页数:6
相关论文
共 69 条
  • [1] Substitutional nitrogen incorporation through rf glow discharge treatment and subsequent oxygen uptake on vertically aligned carbon nanotubes
    Abbas, Gamal
    Papakonstantinou, Pagona
    Iyer, Ganjigunte R. S.
    Kirkman, Ian W.
    Chen, Li C.
    [J]. PHYSICAL REVIEW B, 2007, 75 (19)
  • [2] Temperature dependent Raman spectroscopy of chemically derived graphene
    Allen, Matthew J.
    Fowler, Jesse D.
    Tung, Vincent C.
    Yang, Yang
    Weiller, Bruce H.
    Kaner, Richard B.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (19)
  • [3] Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications
    Alwarappan, Subbiah
    Erdem, Arzum
    Liu, Chang
    Li, Chen-Zhong
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (20) : 8853 - 8857
  • [4] Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes
    Arrigo, Rosa
    Haevecker, Michael
    Schloegl, Robert
    Su, Dang Sheng
    [J]. CHEMICAL COMMUNICATIONS, 2008, (40) : 4891 - 4893
  • [5] Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites
    Banks, CE
    Davies, TJ
    Wildgoose, GG
    Compton, RG
    [J]. CHEMICAL COMMUNICATIONS, 2005, (07) : 829 - 841
  • [6] Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts
    Biddinger, Elizabeth J.
    von Deak, Dieter
    Ozkan, Umit S.
    [J]. TOPICS IN CATALYSIS, 2009, 52 (11) : 1566 - 1574
  • [7] Boukhvalov DW, 2008, NANO LETT, V8, P4373, DOI [10.1021/nl802234n, 10.1021/nl802098g]
  • [8] Dielectric Screening Enhanced Performance in Graphene FET
    Chen, Fang
    Xia, Jilin
    Ferry, David K.
    Tao, Nongjian
    [J]. NANO LETTERS, 2009, 9 (07) : 2571 - 2574
  • [9] Oxygen Electroreduction Catalyzed by Gold Nanoclusters: Strong Core Size Effects
    Chen, Wei
    Chen, Shaowei
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (24) : 4386 - 4389
  • [10] Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions
    Chen, Zhongwei
    Waje, Mahesh
    Li, Wenzhen
    Yan, Yushan
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (22) : 4060 - 4063