Nitrogen-doped graphene and its electrochemical applications

被引:949
作者
Shao, Yuyan [1 ]
Zhang, Sheng [1 ]
Engelhard, Mark H. [1 ]
Li, Guosheng [1 ]
Shao, Guocheng [1 ]
Wang, Yong [1 ,2 ]
Liu, Jun [1 ]
Aksay, Ilhan A. [3 ]
Lin, Yuehe [1 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
[2] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA
[3] Princeton Univ, Dept Biol & Chem Engn, Princeton, NJ 08544 USA
关键词
OXYGEN REDUCTION CATALYSTS; ELECTROLYTE FUEL-CELLS; FUNCTIONALIZED GRAPHENE; ELECTROCATALYTIC ACTIVITY; CARBON NANOSTRUCTURES; RAMAN-SPECTRA; HIGH-YIELD; GRAPHITE; STABILITY; NANOTUBES;
D O I
10.1039/c0jm00782j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-doped graphene (N-graphene) is obtained by exposing graphene to nitrogen plasma. N-graphene exhibits much higher electrocatalytic activity toward oxygen reduction and H2O2 reduction than graphene, and much higher durability and selectivity than the widely-used expensive Pt for oxygen reduction. The excellent electrochemical performance of N-graphene is attributed to nitrogen functional groups and the specific properties of graphene. This indicates that N-graphene is promising for applications in electrochemical energy devices (fuel cells, metal-air batteries) and biosensors.
引用
收藏
页码:7491 / 7496
页数:6
相关论文
共 69 条
  • [41] Electric field effect in atomically thin carbon films
    Novoselov, KS
    Geim, AK
    Morozov, SV
    Jiang, D
    Zhang, Y
    Dubonos, SV
    Grigorieva, IV
    Firsov, AA
    [J]. SCIENCE, 2004, 306 (5696) : 666 - 669
  • [42] Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene
    Panchokarla, L. S.
    Subrahmanyam, K. S.
    Saha, S. K.
    Govindaraj, Achutharao
    Krishnamurthy, H. R.
    Waghmare, U. V.
    Rao, C. N. R.
    [J]. ADVANCED MATERIALS, 2009, 21 (46) : 4726 - +
  • [43] Park S, 2009, NAT NANOTECHNOL, V4, P217, DOI [10.1038/NNANO.2009.58, 10.1038/nnano.2009.58]
  • [44] Studying disorder in graphite-based systems by Raman spectroscopy
    Pimenta, M. A.
    Dresselhaus, G.
    Dresselhaus, M. S.
    Cancado, L. G.
    Jorio, A.
    Saito, R.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (11) : 1276 - 1291
  • [45] Solvothermal-Assisted Exfoliation Process to Produce Graphene with High Yield and High Quality
    Qian, Wen
    Hao, Rui
    Hou, Yanglong
    Tian, Yuan
    Shen, Chengmin
    Gao, Hongjun
    Liang, Xuelei
    [J]. NANO RESEARCH, 2009, 2 (09) : 706 - 712
  • [46] Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells
    Qu, Liangti
    Liu, Yong
    Baek, Jong-Beom
    Dai, Liming
    [J]. ACS NANO, 2010, 4 (03) : 1321 - 1326
  • [47] Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition
    Reina, Alfonso
    Jia, Xiaoting
    Ho, John
    Nezich, Daniel
    Son, Hyungbin
    Bulovic, Vladimir
    Dresselhaus, Mildred S.
    Kong, Jing
    [J]. NANO LETTERS, 2009, 9 (01) : 30 - 35
  • [48] Functionalized single graphene sheets derived from splitting graphite oxide
    Schniepp, HC
    Li, JL
    McAllister, MJ
    Sai, H
    Herrera-Alonso, M
    Adamson, DH
    Prud'homme, RK
    Car, R
    Saville, DA
    Aksay, IA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (17) : 8535 - 8539
  • [49] Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene
    Shan, Changsheng
    Yang, Huafeng
    Song, Jiangfeng
    Han, Dongxue
    Ivaska, Ari
    Niu, Li
    [J]. ANALYTICAL CHEMISTRY, 2009, 81 (06) : 2378 - 2382
  • [50] Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes
    Shang, Nai Gui
    Papakonstantinou, Pagona
    McMullan, Martin
    Chu, Ming
    Stamboulis, Artemis
    Potenza, Alessandro
    Dhesi, Sarnjeet S.
    Marchetto, Helder
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (21) : 3506 - 3514