Entanglement, fidelity, and topological entropy in a quantum phase transition to topological order

被引:95
作者
Hamma, A. [1 ]
Zhang, W. [2 ]
Haas, S. [2 ]
Lidar, D. A. [1 ,2 ,3 ]
机构
[1] Univ So Calif, Ctr Quantum Informat Sci & Technol, Dept Chem, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ctr Quantum Informat Sci & Technol, Dept Phys & Astron, Los Angeles, CA 90089 USA
[3] Univ So Calif, Ctr Quantum Informat Sci & Technol, Dept Elect Engn, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.77.155111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a numerical study of a quantum phase transition from a spin-polarized to a topologically ordered phase in a system of spin-1/2 particles on a torus. We demonstrate that this non-symmetry-breaking topological quantum phase transition (TOQPT) is of second order. The transition is analyzed via the ground state energy and fidelity, block entanglement, Wilson loops, and the recently proposed topological entropy. Only the topological entropy distinguishes the TOQPT from a standard QPT, and remarkably, does so already for small system sizes. Thus the topological entropy serves as a proper order parameter. We demonstrate that our conclusions are robust under the addition of random perturbations, not only in the topological phase, but also in the spin-polarized phase and even at the critical point.
引用
收藏
页数:6
相关论文
共 29 条
[1]   Measurability of Wilson loop operators [J].
Beckman, D ;
Gottesman, D ;
Kitaev, A ;
Preskill, J .
PHYSICAL REVIEW D, 2002, 65 (06)
[2]   Quantum topological phase transition at the microscopic level [J].
Castelnovo, Claudio ;
Chamon, Claudio .
PHYSICAL REVIEW B, 2008, 77 (05)
[3]   IMPOSSIBILITY OF SPONTANEOUSLY BREAKING LOCAL SYMMETRIES [J].
ELITZUR, S .
PHYSICAL REVIEW D, 1975, 12 (12) :3978-3982
[4]  
Freedman MH, 2003, B AM MATH SOC, V40, P31
[5]   CORRELATION-FUNCTIONS OF THE ANTIFERROMAGNETIC HEISENBERG-MODEL USING A MODIFIED LANCZOS METHOD [J].
GAGLIANO, ER ;
DAGOTTO, E ;
MOREO, A ;
ALCARAZ, FC .
PHYSICAL REVIEW B, 1986, 34 (03) :1677-1682
[6]   String and membrane condensation on three-dimensional lattices [J].
Hamma, A ;
Zanardi, P ;
Wen, XG .
PHYSICAL REVIEW B, 2005, 72 (03)
[7]   Ground state entanglement and geometric entropy in the Kitaev model [J].
Hamma, A ;
Ionicioiu, R ;
Zanardi, P .
PHYSICS LETTERS A, 2005, 337 (1-2) :22-28
[8]   Bipartite entanglement and entropic boundary law in lattice spin systems [J].
Hamma, A ;
Ionicioiu, R ;
Zanardi, P .
PHYSICAL REVIEW A, 2005, 71 (02)
[9]   Adiabatic preparation of topological order [J].
Hamma, Alioscia ;
Lidar, Daniel A. .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[10]   Topological entanglement entropy [J].
Kitaev, A ;
Preskill, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)