Stable quantum computation of unstable classical chaos

被引:32
作者
Georgeot, B [1 ]
Shepelyansky, DL [1 ]
机构
[1] Univ Toulouse 3, UMR 5626 CNRS, Phys Quant Lab, F-31062 Toulouse 4, France
关键词
D O I
10.1103/PhysRevLett.86.5393
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show on the example of the Arnold cat map that classical chaotic systems can be simulated with exponential efficiency on a quantum computer. Although classical computer errors grow exponentially with time, the quantum algorithm with moderate imperfections is able to simulate accurately the unstable chaotic classical nonlinear dynamics for long times. The algorithm can be easily implemented on systems of a few qubits.
引用
收藏
页码:5393 / 5396
页数:4
相关论文
共 21 条
[1]  
Arnold VI., 1968, Ergodic problems of classical mechanics
[2]   Efficient networks for quantum factoring [J].
Beckman, D ;
Chari, AN ;
Devabhaktuni, S ;
Preskill, J .
PHYSICAL REVIEW A, 1996, 54 (02) :1034-1063
[3]   QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
SCIENCE, 1995, 270 (5234) :255-261
[4]   EXACT NUMERICAL-STUDIES OF HAMILTONIAN MAPS - ITERATING WITHOUT ROUNDOFF ERROR [J].
EARN, DJD ;
TREMAINE, S .
PHYSICA D, 1992, 56 (01) :1-22
[5]   Quantum computation and Shor's factoring algorithm [J].
Ekert, A ;
Jozsa, R .
REVIEWS OF MODERN PHYSICS, 1996, 68 (03) :733-753
[6]   QUANTUM-MECHANICAL COMPUTERS [J].
FEYNMAN, RP .
FOUNDATIONS OF PHYSICS, 1986, 16 (06) :507-531
[7]   Emergence of quantum chaos in the quantum computes core and how to manage it [J].
Georgeot, B ;
Shepelyansky, DL .
PHYSICAL REVIEW E, 2000, 62 (05) :6366-6375
[8]   Exponential gain in quantum computing of quantum chaos and localization [J].
Georgeot, B ;
Shepelyansky, DL .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2890-2893
[9]   Quantum chaos border for quantum computing [J].
Georgeot, B ;
Shepelyansky, DL .
PHYSICAL REVIEW E, 2000, 62 (03) :3504-3507
[10]   Quantum mechanics helps in searching for a needle in a haystack [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1997, 79 (02) :325-328